| Step |
Hyp |
Ref |
Expression |
| 0 |
|
culm |
⊢ ⇝𝑢 |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
vy |
⊢ 𝑦 |
| 5 |
|
vn |
⊢ 𝑛 |
| 6 |
|
cz |
⊢ ℤ |
| 7 |
3
|
cv |
⊢ 𝑓 |
| 8 |
|
cuz |
⊢ ℤ≥ |
| 9 |
5
|
cv |
⊢ 𝑛 |
| 10 |
9 8
|
cfv |
⊢ ( ℤ≥ ‘ 𝑛 ) |
| 11 |
|
cc |
⊢ ℂ |
| 12 |
|
cmap |
⊢ ↑m |
| 13 |
1
|
cv |
⊢ 𝑠 |
| 14 |
11 13 12
|
co |
⊢ ( ℂ ↑m 𝑠 ) |
| 15 |
10 14 7
|
wf |
⊢ 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) |
| 16 |
4
|
cv |
⊢ 𝑦 |
| 17 |
13 11 16
|
wf |
⊢ 𝑦 : 𝑠 ⟶ ℂ |
| 18 |
|
vx |
⊢ 𝑥 |
| 19 |
|
crp |
⊢ ℝ+ |
| 20 |
|
vj |
⊢ 𝑗 |
| 21 |
|
vk |
⊢ 𝑘 |
| 22 |
20
|
cv |
⊢ 𝑗 |
| 23 |
22 8
|
cfv |
⊢ ( ℤ≥ ‘ 𝑗 ) |
| 24 |
|
vz |
⊢ 𝑧 |
| 25 |
|
cabs |
⊢ abs |
| 26 |
21
|
cv |
⊢ 𝑘 |
| 27 |
26 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑘 ) |
| 28 |
24
|
cv |
⊢ 𝑧 |
| 29 |
28 27
|
cfv |
⊢ ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) |
| 30 |
|
cmin |
⊢ − |
| 31 |
28 16
|
cfv |
⊢ ( 𝑦 ‘ 𝑧 ) |
| 32 |
29 31 30
|
co |
⊢ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) |
| 33 |
32 25
|
cfv |
⊢ ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) |
| 34 |
|
clt |
⊢ < |
| 35 |
18
|
cv |
⊢ 𝑥 |
| 36 |
33 35 34
|
wbr |
⊢ ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 37 |
36 24 13
|
wral |
⊢ ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 38 |
37 21 23
|
wral |
⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 39 |
38 20 10
|
wrex |
⊢ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 40 |
39 18 19
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 41 |
15 17 40
|
w3a |
⊢ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 42 |
41 5 6
|
wrex |
⊢ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 43 |
42 3 4
|
copab |
⊢ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } |
| 44 |
1 2 43
|
cmpt |
⊢ ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
| 45 |
0 44
|
wceq |
⊢ ⇝𝑢 = ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |