Metamath Proof Explorer


Definition df-ulm

Description: Define the uniform convergence of a sequence of functions. Here F ( ~>uS ) G if F is a sequence of functions F ( n ) , n e. NN defined on S and G is a function on S , and for every 0 < x there is a j such that the functions F ( k ) for j <_ k are all uniformly within x of G on the domain S . Compare with df-clim . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion df-ulm 𝑢 = ( 𝑠 ∈ V ↦ { ⟨ 𝑓 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 culm 𝑢
1 vs 𝑠
2 cvv V
3 vf 𝑓
4 vy 𝑦
5 vn 𝑛
6 cz
7 3 cv 𝑓
8 cuz
9 5 cv 𝑛
10 9 8 cfv ( ℤ𝑛 )
11 cc
12 cmap m
13 1 cv 𝑠
14 11 13 12 co ( ℂ ↑m 𝑠 )
15 10 14 7 wf 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 )
16 4 cv 𝑦
17 13 11 16 wf 𝑦 : 𝑠 ⟶ ℂ
18 vx 𝑥
19 crp +
20 vj 𝑗
21 vk 𝑘
22 20 cv 𝑗
23 22 8 cfv ( ℤ𝑗 )
24 vz 𝑧
25 cabs abs
26 21 cv 𝑘
27 26 7 cfv ( 𝑓𝑘 )
28 24 cv 𝑧
29 28 27 cfv ( ( 𝑓𝑘 ) ‘ 𝑧 )
30 cmin
31 28 16 cfv ( 𝑦𝑧 )
32 29 31 30 co ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) )
33 32 25 cfv ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) )
34 clt <
35 18 cv 𝑥
36 33 35 34 wbr ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥
37 36 24 13 wral 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥
38 37 21 23 wral 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥
39 38 20 10 wrex 𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥
40 39 18 19 wral 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥
41 15 17 40 w3a ( 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥 )
42 41 5 6 wrex 𝑛 ∈ ℤ ( 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥 )
43 42 3 4 copab { ⟨ 𝑓 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥 ) }
44 1 2 43 cmpt ( 𝑠 ∈ V ↦ { ⟨ 𝑓 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥 ) } )
45 0 44 wceq 𝑢 = ( 𝑠 ∈ V ↦ { ⟨ 𝑓 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ𝑛 ) ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑠 ( abs ‘ ( ( ( 𝑓𝑘 ) ‘ 𝑧 ) − ( 𝑦𝑧 ) ) ) < 𝑥 ) } )