| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulm2.z |
|
| 2 |
|
ulm2.m |
|
| 3 |
|
ulm2.f |
|
| 4 |
|
ulm2.b |
|
| 5 |
|
ulm2.a |
|
| 6 |
|
ulm2.g |
|
| 7 |
|
ulm2.s |
|
| 8 |
|
ulmval |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
3anan12 |
|
| 11 |
3
|
fdmd |
|
| 12 |
|
fdm |
|
| 13 |
11 12
|
sylan9req |
|
| 14 |
1 13
|
eqtr3id |
|
| 15 |
2
|
adantr |
|
| 16 |
|
uz11 |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
mpbid |
|
| 19 |
18
|
eqcomd |
|
| 20 |
|
fveq2 |
|
| 21 |
20 1
|
eqtr4di |
|
| 22 |
21
|
feq2d |
|
| 23 |
22
|
biimparc |
|
| 24 |
3 23
|
sylan |
|
| 25 |
19 24
|
impbida |
|
| 26 |
25
|
anbi1d |
|
| 27 |
6
|
biantrurd |
|
| 28 |
|
simp-4l |
|
| 29 |
|
simpr |
|
| 30 |
|
uzid |
|
| 31 |
2 30
|
syl |
|
| 32 |
31 1
|
eleqtrrdi |
|
| 33 |
32
|
adantr |
|
| 34 |
29 33
|
eqeltrd |
|
| 35 |
1
|
uztrn2 |
|
| 36 |
34 35
|
sylan |
|
| 37 |
1
|
uztrn2 |
|
| 38 |
36 37
|
sylan |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
28 39 40 4
|
syl12anc |
|
| 42 |
28 5
|
sylancom |
|
| 43 |
41 42
|
oveq12d |
|
| 44 |
43
|
fveq2d |
|
| 45 |
44
|
breq1d |
|
| 46 |
45
|
ralbidva |
|
| 47 |
46
|
ralbidva |
|
| 48 |
47
|
rexbidva |
|
| 49 |
48
|
ralbidv |
|
| 50 |
49
|
pm5.32da |
|
| 51 |
26 27 50
|
3bitr3d |
|
| 52 |
10 51
|
bitrid |
|
| 53 |
52
|
rexbidv |
|
| 54 |
21
|
rexeqdv |
|
| 55 |
54
|
ralbidv |
|
| 56 |
55
|
ceqsrexv |
|
| 57 |
2 56
|
syl |
|
| 58 |
9 53 57
|
3bitrd |
|