Metamath Proof Explorer


Theorem lgamgulm2

Description: Rewrite the limit of the sequence G in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φ R
lgamgulm.u U = x | x R k 0 1 R x + k
lgamgulm.g G = m z U z log m + 1 m log z m + 1
Assertion lgamgulm2 φ z U log Γ z seq 1 f + G u U z U log Γ z + log z

Proof

Step Hyp Ref Expression
1 lgamgulm.r φ R
2 lgamgulm.u U = x | x R k 0 1 R x + k
3 lgamgulm.g G = m z U z log m + 1 m log z m + 1
4 1 2 lgamgulmlem1 φ U
5 4 sselda φ z U z
6 ovex n z log n + 1 n log z n + 1 log z V
7 df-lgam log Γ = z n z log n + 1 n log z n + 1 log z
8 7 fvmpt2 z n z log n + 1 n log z n + 1 log z V log Γ z = n z log n + 1 n log z n + 1 log z
9 5 6 8 sylancl φ z U log Γ z = n z log n + 1 n log z n + 1 log z
10 nnuz = 1
11 1zzd φ z U 1
12 oveq1 m = n m + 1 = n + 1
13 id m = n m = n
14 12 13 oveq12d m = n m + 1 m = n + 1 n
15 14 fveq2d m = n log m + 1 m = log n + 1 n
16 15 oveq2d m = n z log m + 1 m = z log n + 1 n
17 oveq2 m = n z m = z n
18 17 fvoveq1d m = n log z m + 1 = log z n + 1
19 16 18 oveq12d m = n z log m + 1 m log z m + 1 = z log n + 1 n log z n + 1
20 eqid m z log m + 1 m log z m + 1 = m z log m + 1 m log z m + 1
21 ovex z log n + 1 n log z n + 1 V
22 19 20 21 fvmpt n m z log m + 1 m log z m + 1 n = z log n + 1 n log z n + 1
23 22 adantl φ z U n m z log m + 1 m log z m + 1 n = z log n + 1 n log z n + 1
24 5 eldifad φ z U z
25 24 adantr φ z U n z
26 simpr φ z U n n
27 26 peano2nnd φ z U n n + 1
28 27 nnrpd φ z U n n + 1 +
29 26 nnrpd φ z U n n +
30 28 29 rpdivcld φ z U n n + 1 n +
31 30 relogcld φ z U n log n + 1 n
32 31 recnd φ z U n log n + 1 n
33 25 32 mulcld φ z U n z log n + 1 n
34 26 nncnd φ z U n n
35 26 nnne0d φ z U n n 0
36 25 34 35 divcld φ z U n z n
37 1cnd φ z U n 1
38 36 37 addcld φ z U n z n + 1
39 5 adantr φ z U n z
40 39 26 dmgmdivn0 φ z U n z n + 1 0
41 38 40 logcld φ z U n log z n + 1
42 33 41 subcld φ z U n z log n + 1 n log z n + 1
43 1z 1
44 seqfn 1 seq 1 f + G Fn 1
45 43 44 ax-mp seq 1 f + G Fn 1
46 10 fneq2i seq 1 f + G Fn seq 1 f + G Fn 1
47 45 46 mpbir seq 1 f + G Fn
48 1 2 3 lgamgulm φ seq 1 f + G dom u U
49 ulmdm seq 1 f + G dom u U seq 1 f + G u U u U seq 1 f + G
50 48 49 sylib φ seq 1 f + G u U u U seq 1 f + G
51 ulmf2 seq 1 f + G Fn seq 1 f + G u U u U seq 1 f + G seq 1 f + G : U
52 47 50 51 sylancr φ seq 1 f + G : U
53 52 adantr φ z U seq 1 f + G : U
54 simpr φ z U z U
55 seqex seq 1 + m z log m + 1 m log z m + 1 V
56 55 a1i φ z U seq 1 + m z log m + 1 m log z m + 1 V
57 3 a1i φ z U n G = m z U z log m + 1 m log z m + 1
58 57 seqeq3d φ z U n seq 1 f + G = seq 1 f + m z U z log m + 1 m log z m + 1
59 58 fveq1d φ z U n seq 1 f + G n = seq 1 f + m z U z log m + 1 m log z m + 1 n
60 cnex V
61 2 60 rabex2 U V
62 61 a1i φ n U V
63 simpr φ n n
64 63 10 eleqtrdi φ n n 1
65 fz1ssnn 1 n
66 65 a1i φ n 1 n
67 ovexd φ n m z U z log m + 1 m log z m + 1 V
68 62 64 66 67 seqof2 φ n seq 1 f + m z U z log m + 1 m log z m + 1 n = z U seq 1 + m z log m + 1 m log z m + 1 n
69 68 adantlr φ z U n seq 1 f + m z U z log m + 1 m log z m + 1 n = z U seq 1 + m z log m + 1 m log z m + 1 n
70 59 69 eqtrd φ z U n seq 1 f + G n = z U seq 1 + m z log m + 1 m log z m + 1 n
71 70 fveq1d φ z U n seq 1 f + G n z = z U seq 1 + m z log m + 1 m log z m + 1 n z
72 54 adantr φ z U n z U
73 fvex seq 1 + m z log m + 1 m log z m + 1 n V
74 eqid z U seq 1 + m z log m + 1 m log z m + 1 n = z U seq 1 + m z log m + 1 m log z m + 1 n
75 74 fvmpt2 z U seq 1 + m z log m + 1 m log z m + 1 n V z U seq 1 + m z log m + 1 m log z m + 1 n z = seq 1 + m z log m + 1 m log z m + 1 n
76 72 73 75 sylancl φ z U n z U seq 1 + m z log m + 1 m log z m + 1 n z = seq 1 + m z log m + 1 m log z m + 1 n
77 71 76 eqtrd φ z U n seq 1 f + G n z = seq 1 + m z log m + 1 m log z m + 1 n
78 50 adantr φ z U seq 1 f + G u U u U seq 1 f + G
79 10 11 53 54 56 77 78 ulmclm φ z U seq 1 + m z log m + 1 m log z m + 1 u U seq 1 f + G z
80 10 11 23 42 79 isumclim φ z U n z log n + 1 n log z n + 1 = u U seq 1 f + G z
81 ulmcl seq 1 f + G u U u U seq 1 f + G u U seq 1 f + G : U
82 50 81 syl φ u U seq 1 f + G : U
83 82 ffvelrnda φ z U u U seq 1 f + G z
84 80 83 eqeltrd φ z U n z log n + 1 n log z n + 1
85 5 dmgmn0 φ z U z 0
86 24 85 logcld φ z U log z
87 84 86 subcld φ z U n z log n + 1 n log z n + 1 log z
88 9 87 eqeltrd φ z U log Γ z
89 88 ralrimiva φ z U log Γ z
90 ffn u U seq 1 f + G : U u U seq 1 f + G Fn U
91 50 81 90 3syl φ u U seq 1 f + G Fn U
92 nfcv _ z u U
93 nfcv _ z 1
94 nfcv _ z f +
95 nfcv _ z
96 nfmpt1 _ z z U z log m + 1 m log z m + 1
97 95 96 nfmpt _ z m z U z log m + 1 m log z m + 1
98 3 97 nfcxfr _ z G
99 93 94 98 nfseq _ z seq 1 f + G
100 92 99 nffv _ z u U seq 1 f + G
101 100 dffn5f u U seq 1 f + G Fn U u U seq 1 f + G = z U u U seq 1 f + G z
102 91 101 sylib φ u U seq 1 f + G = z U u U seq 1 f + G z
103 9 oveq1d φ z U log Γ z + log z = n z log n + 1 n log z n + 1 - log z + log z
104 84 86 npcand φ z U n z log n + 1 n log z n + 1 - log z + log z = n z log n + 1 n log z n + 1
105 103 104 80 3eqtrrd φ z U u U seq 1 f + G z = log Γ z + log z
106 105 mpteq2dva φ z U u U seq 1 f + G z = z U log Γ z + log z
107 102 106 eqtrd φ u U seq 1 f + G = z U log Γ z + log z
108 50 107 breqtrd φ seq 1 f + G u U z U log Γ z + log z
109 89 108 jca φ z U log Γ z seq 1 f + G u U z U log Γ z + log z