Metamath Proof Explorer


Theorem dmgmn0

Description: If A is not a nonpositive integer, then A is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypothesis dmgmn0.a φ A
Assertion dmgmn0 φ A 0

Proof

Step Hyp Ref Expression
1 dmgmn0.a φ A
2 1 eldifad φ A
3 2 addid1d φ A + 0 = A
4 0nn0 0 0
5 dmgmaddn0 A 0 0 A + 0 0
6 1 4 5 sylancl φ A + 0 0
7 3 6 eqnetrrd φ A 0