Metamath Proof Explorer


Theorem dmgmn0

Description: If A is not a nonpositive integer, then A is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypothesis dmgmn0.a φA
Assertion dmgmn0 φA0

Proof

Step Hyp Ref Expression
1 dmgmn0.a φA
2 1 eldifad φA
3 2 addridd φA+0=A
4 0nn0 00
5 dmgmaddn0 A00A+00
6 1 4 5 sylancl φA+00
7 3 6 eqnetrrd φA0