| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r |  |-  ( ph -> R e. NN ) | 
						
							| 2 |  | lgamgulm.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ R /\ A. k e. NN0 ( 1 / R ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 3 |  | lgamgulm.g |  |-  G = ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) | 
						
							| 4 | 1 2 | lgamgulmlem1 |  |-  ( ph -> U C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 5 | 4 | sselda |  |-  ( ( ph /\ z e. U ) -> z e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 6 |  | ovex |  |-  ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) e. _V | 
						
							| 7 |  | df-lgam |  |-  log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) ) | 
						
							| 8 | 7 | fvmpt2 |  |-  ( ( z e. ( CC \ ( ZZ \ NN ) ) /\ ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) e. _V ) -> ( log_G ` z ) = ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) ) | 
						
							| 9 | 5 6 8 | sylancl |  |-  ( ( ph /\ z e. U ) -> ( log_G ` z ) = ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) ) | 
						
							| 10 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 11 |  | 1zzd |  |-  ( ( ph /\ z e. U ) -> 1 e. ZZ ) | 
						
							| 12 |  | oveq1 |  |-  ( m = n -> ( m + 1 ) = ( n + 1 ) ) | 
						
							| 13 |  | id |  |-  ( m = n -> m = n ) | 
						
							| 14 | 12 13 | oveq12d |  |-  ( m = n -> ( ( m + 1 ) / m ) = ( ( n + 1 ) / n ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( m = n -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( n + 1 ) / n ) ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( m = n -> ( z x. ( log ` ( ( m + 1 ) / m ) ) ) = ( z x. ( log ` ( ( n + 1 ) / n ) ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( m = n -> ( z / m ) = ( z / n ) ) | 
						
							| 18 | 17 | fvoveq1d |  |-  ( m = n -> ( log ` ( ( z / m ) + 1 ) ) = ( log ` ( ( z / n ) + 1 ) ) ) | 
						
							| 19 | 16 18 | oveq12d |  |-  ( m = n -> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) = ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) ) | 
						
							| 20 |  | eqid |  |-  ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) | 
						
							| 21 |  | ovex |  |-  ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) e. _V | 
						
							| 22 | 19 20 21 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ` n ) = ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ` n ) = ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) ) | 
						
							| 24 | 5 | eldifad |  |-  ( ( ph /\ z e. U ) -> z e. CC ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> z e. CC ) | 
						
							| 26 |  | simpr |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> n e. NN ) | 
						
							| 27 | 26 | peano2nnd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 28 | 27 | nnrpd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( n + 1 ) e. RR+ ) | 
						
							| 29 | 26 | nnrpd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> n e. RR+ ) | 
						
							| 30 | 28 29 | rpdivcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( n + 1 ) / n ) e. RR+ ) | 
						
							| 31 | 30 | relogcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( log ` ( ( n + 1 ) / n ) ) e. RR ) | 
						
							| 32 | 31 | recnd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( log ` ( ( n + 1 ) / n ) ) e. CC ) | 
						
							| 33 | 25 32 | mulcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( z x. ( log ` ( ( n + 1 ) / n ) ) ) e. CC ) | 
						
							| 34 | 26 | nncnd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> n e. CC ) | 
						
							| 35 | 26 | nnne0d |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> n =/= 0 ) | 
						
							| 36 | 25 34 35 | divcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( z / n ) e. CC ) | 
						
							| 37 |  | 1cnd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> 1 e. CC ) | 
						
							| 38 | 36 37 | addcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( z / n ) + 1 ) e. CC ) | 
						
							| 39 | 5 | adantr |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> z e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 40 | 39 26 | dmgmdivn0 |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( z / n ) + 1 ) =/= 0 ) | 
						
							| 41 | 38 40 | logcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( log ` ( ( z / n ) + 1 ) ) e. CC ) | 
						
							| 42 | 33 41 | subcld |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) e. CC ) | 
						
							| 43 |  | 1z |  |-  1 e. ZZ | 
						
							| 44 |  | seqfn |  |-  ( 1 e. ZZ -> seq 1 ( oF + , G ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 45 | 43 44 | ax-mp |  |-  seq 1 ( oF + , G ) Fn ( ZZ>= ` 1 ) | 
						
							| 46 | 10 | fneq2i |  |-  ( seq 1 ( oF + , G ) Fn NN <-> seq 1 ( oF + , G ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 47 | 45 46 | mpbir |  |-  seq 1 ( oF + , G ) Fn NN | 
						
							| 48 | 1 2 3 | lgamgulm |  |-  ( ph -> seq 1 ( oF + , G ) e. dom ( ~~>u ` U ) ) | 
						
							| 49 |  | ulmdm |  |-  ( seq 1 ( oF + , G ) e. dom ( ~~>u ` U ) <-> seq 1 ( oF + , G ) ( ~~>u ` U ) ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ) | 
						
							| 50 | 48 49 | sylib |  |-  ( ph -> seq 1 ( oF + , G ) ( ~~>u ` U ) ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ) | 
						
							| 51 |  | ulmf2 |  |-  ( ( seq 1 ( oF + , G ) Fn NN /\ seq 1 ( oF + , G ) ( ~~>u ` U ) ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ) -> seq 1 ( oF + , G ) : NN --> ( CC ^m U ) ) | 
						
							| 52 | 47 50 51 | sylancr |  |-  ( ph -> seq 1 ( oF + , G ) : NN --> ( CC ^m U ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ z e. U ) -> seq 1 ( oF + , G ) : NN --> ( CC ^m U ) ) | 
						
							| 54 |  | simpr |  |-  ( ( ph /\ z e. U ) -> z e. U ) | 
						
							| 55 |  | seqex |  |-  seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) e. _V | 
						
							| 56 | 55 | a1i |  |-  ( ( ph /\ z e. U ) -> seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) e. _V ) | 
						
							| 57 | 3 | a1i |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> G = ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) | 
						
							| 58 | 57 | seqeq3d |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> seq 1 ( oF + , G ) = seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ) | 
						
							| 59 | 58 | fveq1d |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( seq 1 ( oF + , G ) ` n ) = ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) ) | 
						
							| 60 |  | cnex |  |-  CC e. _V | 
						
							| 61 | 2 60 | rabex2 |  |-  U e. _V | 
						
							| 62 | 61 | a1i |  |-  ( ( ph /\ n e. NN ) -> U e. _V ) | 
						
							| 63 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 64 | 63 10 | eleqtrdi |  |-  ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 65 |  | fz1ssnn |  |-  ( 1 ... n ) C_ NN | 
						
							| 66 | 65 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( 1 ... n ) C_ NN ) | 
						
							| 67 |  | ovexd |  |-  ( ( ( ph /\ n e. NN ) /\ ( m e. NN /\ z e. U ) ) -> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) e. _V ) | 
						
							| 68 | 62 64 66 67 | seqof2 |  |-  ( ( ph /\ n e. NN ) -> ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) = ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ) | 
						
							| 69 | 68 | adantlr |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) = ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ) | 
						
							| 70 | 59 69 | eqtrd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( seq 1 ( oF + , G ) ` n ) = ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ) | 
						
							| 71 | 70 | fveq1d |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( seq 1 ( oF + , G ) ` n ) ` z ) = ( ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ` z ) ) | 
						
							| 72 | 54 | adantr |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> z e. U ) | 
						
							| 73 |  | fvex |  |-  ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) e. _V | 
						
							| 74 |  | eqid |  |-  ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) = ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) | 
						
							| 75 | 74 | fvmpt2 |  |-  ( ( z e. U /\ ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) e. _V ) -> ( ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ` z ) = ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) | 
						
							| 76 | 72 73 75 | sylancl |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ` z ) = ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) | 
						
							| 77 | 71 76 | eqtrd |  |-  ( ( ( ph /\ z e. U ) /\ n e. NN ) -> ( ( seq 1 ( oF + , G ) ` n ) ` z ) = ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) | 
						
							| 78 | 50 | adantr |  |-  ( ( ph /\ z e. U ) -> seq 1 ( oF + , G ) ( ~~>u ` U ) ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ) | 
						
							| 79 | 10 11 53 54 56 77 78 | ulmclm |  |-  ( ( ph /\ z e. U ) -> seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ~~> ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) ) | 
						
							| 80 | 10 11 23 42 79 | isumclim |  |-  ( ( ph /\ z e. U ) -> sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) = ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) ) | 
						
							| 81 |  | ulmcl |  |-  ( seq 1 ( oF + , G ) ( ~~>u ` U ) ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) -> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) : U --> CC ) | 
						
							| 82 | 50 81 | syl |  |-  ( ph -> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) : U --> CC ) | 
						
							| 83 | 82 | ffvelcdmda |  |-  ( ( ph /\ z e. U ) -> ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) e. CC ) | 
						
							| 84 | 80 83 | eqeltrd |  |-  ( ( ph /\ z e. U ) -> sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) e. CC ) | 
						
							| 85 | 5 | dmgmn0 |  |-  ( ( ph /\ z e. U ) -> z =/= 0 ) | 
						
							| 86 | 24 85 | logcld |  |-  ( ( ph /\ z e. U ) -> ( log ` z ) e. CC ) | 
						
							| 87 | 84 86 | subcld |  |-  ( ( ph /\ z e. U ) -> ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) e. CC ) | 
						
							| 88 | 9 87 | eqeltrd |  |-  ( ( ph /\ z e. U ) -> ( log_G ` z ) e. CC ) | 
						
							| 89 | 88 | ralrimiva |  |-  ( ph -> A. z e. U ( log_G ` z ) e. CC ) | 
						
							| 90 |  | ffn |  |-  ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) : U --> CC -> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) Fn U ) | 
						
							| 91 | 50 81 90 | 3syl |  |-  ( ph -> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) Fn U ) | 
						
							| 92 |  | nfcv |  |-  F/_ z ( ~~>u ` U ) | 
						
							| 93 |  | nfcv |  |-  F/_ z 1 | 
						
							| 94 |  | nfcv |  |-  F/_ z oF + | 
						
							| 95 |  | nfcv |  |-  F/_ z NN | 
						
							| 96 |  | nfmpt1 |  |-  F/_ z ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) | 
						
							| 97 | 95 96 | nfmpt |  |-  F/_ z ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) | 
						
							| 98 | 3 97 | nfcxfr |  |-  F/_ z G | 
						
							| 99 | 93 94 98 | nfseq |  |-  F/_ z seq 1 ( oF + , G ) | 
						
							| 100 | 92 99 | nffv |  |-  F/_ z ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) | 
						
							| 101 | 100 | dffn5f |  |-  ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) Fn U <-> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) = ( z e. U |-> ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) ) ) | 
						
							| 102 | 91 101 | sylib |  |-  ( ph -> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) = ( z e. U |-> ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) ) ) | 
						
							| 103 | 9 | oveq1d |  |-  ( ( ph /\ z e. U ) -> ( ( log_G ` z ) + ( log ` z ) ) = ( ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) + ( log ` z ) ) ) | 
						
							| 104 | 84 86 | npcand |  |-  ( ( ph /\ z e. U ) -> ( ( sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) - ( log ` z ) ) + ( log ` z ) ) = sum_ n e. NN ( ( z x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( z / n ) + 1 ) ) ) ) | 
						
							| 105 | 103 104 80 | 3eqtrrd |  |-  ( ( ph /\ z e. U ) -> ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) = ( ( log_G ` z ) + ( log ` z ) ) ) | 
						
							| 106 | 105 | mpteq2dva |  |-  ( ph -> ( z e. U |-> ( ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) ` z ) ) = ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) | 
						
							| 107 | 102 106 | eqtrd |  |-  ( ph -> ( ( ~~>u ` U ) ` seq 1 ( oF + , G ) ) = ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) | 
						
							| 108 | 50 107 | breqtrd |  |-  ( ph -> seq 1 ( oF + , G ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) | 
						
							| 109 | 89 108 | jca |  |-  ( ph -> ( A. z e. U ( log_G ` z ) e. CC /\ seq 1 ( oF + , G ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) ) |