Step |
Hyp |
Ref |
Expression |
1 |
|
lgamucov.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑟 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑟 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
2 |
|
lgamucov.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
4 |
1 2 3
|
lgamucov |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℕ 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) ) |
5 |
3
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
6 |
1
|
ssrab3 |
⊢ 𝑈 ⊆ ℂ |
7 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
8 |
7
|
ntrss2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑈 ⊆ ℂ ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) ⊆ 𝑈 ) |
9 |
5 6 8
|
mp2an |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) ⊆ 𝑈 |
10 |
9
|
sseli |
⊢ ( 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) → 𝐴 ∈ 𝑈 ) |
11 |
10
|
reximi |
⊢ ( ∃ 𝑟 ∈ ℕ 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) → ∃ 𝑟 ∈ ℕ 𝐴 ∈ 𝑈 ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℕ 𝐴 ∈ 𝑈 ) |