| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamucov.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 2 |  | lgamucov.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 4 | 1 2 3 | lgamucov | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℕ 𝐴  ∈  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) ) | 
						
							| 5 | 3 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 6 | 1 | ssrab3 | ⊢ 𝑈  ⊆  ℂ | 
						
							| 7 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 8 | 7 | ntrss2 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  𝑈  ⊆  ℂ )  →  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 )  ⊆  𝑈 ) | 
						
							| 9 | 5 6 8 | mp2an | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 )  ⊆  𝑈 | 
						
							| 10 | 9 | sseli | ⊢ ( 𝐴  ∈  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 )  →  𝐴  ∈  𝑈 ) | 
						
							| 11 | 10 | reximi | ⊢ ( ∃ 𝑟  ∈  ℕ 𝐴  ∈  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 )  →  ∃ 𝑟  ∈  ℕ 𝐴  ∈  𝑈 ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℕ 𝐴  ∈  𝑈 ) |