Metamath Proof Explorer


Theorem lgamucov2

Description: The U regions used in the proof of lgamgulm have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Hypotheses lgamucov.u 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑟 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑟 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) }
lgamucov.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
Assertion lgamucov2 ( 𝜑 → ∃ 𝑟 ∈ ℕ 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 lgamucov.u 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑟 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑟 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) }
2 lgamucov.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
3 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
4 1 2 3 lgamucov ( 𝜑 → ∃ 𝑟 ∈ ℕ 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) )
5 3 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
6 1 ssrab3 𝑈 ⊆ ℂ
7 unicntop ℂ = ( TopOpen ‘ ℂfld )
8 7 ntrss2 ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑈 ⊆ ℂ ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) ⊆ 𝑈 )
9 5 6 8 mp2an ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) ⊆ 𝑈
10 9 sseli ( 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) → 𝐴𝑈 )
11 10 reximi ( ∃ 𝑟 ∈ ℕ 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑈 ) → ∃ 𝑟 ∈ ℕ 𝐴𝑈 )
12 4 11 syl ( 𝜑 → ∃ 𝑟 ∈ ℕ 𝐴𝑈 )