| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamucov.u |
|- U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } |
| 2 |
|
lgamucov.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 4 |
1 2 3
|
lgamucov |
|- ( ph -> E. r e. NN A e. ( ( int ` ( TopOpen ` CCfld ) ) ` U ) ) |
| 5 |
3
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 6 |
1
|
ssrab3 |
|- U C_ CC |
| 7 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 8 |
7
|
ntrss2 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ U C_ CC ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` U ) C_ U ) |
| 9 |
5 6 8
|
mp2an |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` U ) C_ U |
| 10 |
9
|
sseli |
|- ( A e. ( ( int ` ( TopOpen ` CCfld ) ) ` U ) -> A e. U ) |
| 11 |
10
|
reximi |
|- ( E. r e. NN A e. ( ( int ` ( TopOpen ` CCfld ) ) ` U ) -> E. r e. NN A e. U ) |
| 12 |
4 11
|
syl |
|- ( ph -> E. r e. NN A e. U ) |