| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamucov.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 2 |  | lgamucov.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 4 | 1 2 3 | lgamucov |  |-  ( ph -> E. r e. NN A e. ( ( int ` ( TopOpen ` CCfld ) ) ` U ) ) | 
						
							| 5 | 3 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 6 | 1 | ssrab3 |  |-  U C_ CC | 
						
							| 7 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 8 | 7 | ntrss2 |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ U C_ CC ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` U ) C_ U ) | 
						
							| 9 | 5 6 8 | mp2an |  |-  ( ( int ` ( TopOpen ` CCfld ) ) ` U ) C_ U | 
						
							| 10 | 9 | sseli |  |-  ( A e. ( ( int ` ( TopOpen ` CCfld ) ) ` U ) -> A e. U ) | 
						
							| 11 | 10 | reximi |  |-  ( E. r e. NN A e. ( ( int ` ( TopOpen ` CCfld ) ) ` U ) -> E. r e. NN A e. U ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> E. r e. NN A e. U ) |