Step |
Hyp |
Ref |
Expression |
1 |
|
lgamucov.u |
|- U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } |
2 |
|
lgamucov.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
3 |
|
lgamucov.j |
|- J = ( TopOpen ` CCfld ) |
4 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
5 |
|
difss |
|- ( ZZ \ NN ) C_ ZZ |
6 |
3
|
sszcld |
|- ( ( ZZ \ NN ) C_ ZZ -> ( ZZ \ NN ) e. ( Clsd ` J ) ) |
7 |
3
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
8 |
7
|
toponunii |
|- CC = U. J |
9 |
8
|
cldopn |
|- ( ( ZZ \ NN ) e. ( Clsd ` J ) -> ( CC \ ( ZZ \ NN ) ) e. J ) |
10 |
5 6 9
|
mp2b |
|- ( CC \ ( ZZ \ NN ) ) e. J |
11 |
10
|
a1i |
|- ( ph -> ( CC \ ( ZZ \ NN ) ) e. J ) |
12 |
3
|
cnfldtopn |
|- J = ( MetOpen ` ( abs o. - ) ) |
13 |
12
|
mopni2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( CC \ ( ZZ \ NN ) ) e. J /\ A e. ( CC \ ( ZZ \ NN ) ) ) -> E. a e. RR+ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) |
14 |
4 11 2 13
|
mp3an2i |
|- ( ph -> E. a e. RR+ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) |
15 |
2
|
eldifad |
|- ( ph -> A e. CC ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> A e. CC ) |
17 |
16
|
abscld |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( abs ` A ) e. RR ) |
18 |
|
simprl |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> a e. RR+ ) |
19 |
18
|
rpred |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> a e. RR ) |
20 |
17 19
|
readdcld |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( ( abs ` A ) + a ) e. RR ) |
21 |
|
2re |
|- 2 e. RR |
22 |
21
|
a1i |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> 2 e. RR ) |
23 |
22 18
|
rerpdivcld |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( 2 / a ) e. RR ) |
24 |
20 23
|
readdcld |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR ) |
25 |
|
arch |
|- ( ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR -> E. r e. NN ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) |
26 |
24 25
|
syl |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> E. r e. NN ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) |
27 |
3
|
cnfldtop |
|- J e. Top |
28 |
27
|
a1i |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> J e. Top ) |
29 |
1
|
ssrab3 |
|- U C_ CC |
30 |
29
|
a1i |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> U C_ CC ) |
31 |
16
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> A e. CC ) |
32 |
18
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> a e. RR+ ) |
33 |
32
|
rphalfcld |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( a / 2 ) e. RR+ ) |
34 |
33
|
rpxrd |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( a / 2 ) e. RR* ) |
35 |
12
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ ( a / 2 ) e. RR* ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) e. J ) |
36 |
4 31 34 35
|
mp3an2i |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) e. J ) |
37 |
|
simplr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> x e. CC ) |
38 |
37
|
abscld |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) e. RR ) |
39 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> r e. NN ) |
40 |
39
|
nnred |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> r e. RR ) |
41 |
24
|
ad4antr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR ) |
42 |
20
|
ad4antr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` A ) + a ) e. RR ) |
43 |
17
|
ad4antr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` A ) e. RR ) |
44 |
38 43
|
resubcld |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) e. RR ) |
45 |
19
|
ad4antr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> a e. RR ) |
46 |
45
|
rehalfcld |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( a / 2 ) e. RR ) |
47 |
31
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> A e. CC ) |
48 |
37 47
|
subcld |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( x - A ) e. CC ) |
49 |
48
|
abscld |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` ( x - A ) ) e. RR ) |
50 |
37 47
|
abs2difd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) <_ ( abs ` ( x - A ) ) ) |
51 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
52 |
51
|
cnmetdval |
|- ( ( A e. CC /\ x e. CC ) -> ( A ( abs o. - ) x ) = ( abs ` ( A - x ) ) ) |
53 |
47 37 52
|
syl2anc |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( A ( abs o. - ) x ) = ( abs ` ( A - x ) ) ) |
54 |
47 37
|
abssubd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` ( A - x ) ) = ( abs ` ( x - A ) ) ) |
55 |
53 54
|
eqtrd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( A ( abs o. - ) x ) = ( abs ` ( x - A ) ) ) |
56 |
|
simpr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( A ( abs o. - ) x ) < ( a / 2 ) ) |
57 |
55 56
|
eqbrtrrd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` ( x - A ) ) < ( a / 2 ) ) |
58 |
44 49 46 50 57
|
lelttrd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) < ( a / 2 ) ) |
59 |
32
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> a e. RR+ ) |
60 |
|
rphalflt |
|- ( a e. RR+ -> ( a / 2 ) < a ) |
61 |
59 60
|
syl |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( a / 2 ) < a ) |
62 |
44 46 45 58 61
|
lttrd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) < a ) |
63 |
38 43 45
|
ltsubadd2d |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( ( abs ` x ) - ( abs ` A ) ) < a <-> ( abs ` x ) < ( ( abs ` A ) + a ) ) ) |
64 |
62 63
|
mpbid |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) < ( ( abs ` A ) + a ) ) |
65 |
|
2rp |
|- 2 e. RR+ |
66 |
65
|
a1i |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> 2 e. RR+ ) |
67 |
66 59
|
rpdivcld |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( 2 / a ) e. RR+ ) |
68 |
42 67
|
ltaddrpd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` A ) + a ) < ( ( ( abs ` A ) + a ) + ( 2 / a ) ) ) |
69 |
38 42 41 64 68
|
lttrd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) < ( ( ( abs ` A ) + a ) + ( 2 / a ) ) ) |
70 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) |
71 |
38 41 40 69 70
|
lttrd |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) < r ) |
72 |
38 40 71
|
ltled |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) <_ r ) |
73 |
39
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> r e. NN ) |
74 |
73
|
nnrecred |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) e. RR ) |
75 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> x e. CC ) |
76 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> k e. NN0 ) |
77 |
76
|
nn0cnd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> k e. CC ) |
78 |
75 77
|
addcld |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x + k ) e. CC ) |
79 |
78
|
abscld |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs ` ( x + k ) ) e. RR ) |
80 |
46
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( a / 2 ) e. RR ) |
81 |
23
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) e. RR ) |
82 |
41
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR ) |
83 |
40
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> r e. RR ) |
84 |
47
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A e. CC ) |
85 |
2
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
86 |
85
|
dmgmn0 |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A =/= 0 ) |
87 |
84 86
|
absrpcld |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs ` A ) e. RR+ ) |
88 |
59
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a e. RR+ ) |
89 |
87 88
|
rpaddcld |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( abs ` A ) + a ) e. RR+ ) |
90 |
81 89
|
ltaddrp2d |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) < ( ( ( abs ` A ) + a ) + ( 2 / a ) ) ) |
91 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) |
92 |
81 82 83 90 91
|
lttrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) < r ) |
93 |
67
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) e. RR+ ) |
94 |
73
|
nnrpd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> r e. RR+ ) |
95 |
93 94
|
ltrecd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( 2 / a ) < r <-> ( 1 / r ) < ( 1 / ( 2 / a ) ) ) ) |
96 |
92 95
|
mpbid |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) < ( 1 / ( 2 / a ) ) ) |
97 |
|
2cnd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> 2 e. CC ) |
98 |
88
|
rpcnd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a e. CC ) |
99 |
|
2ne0 |
|- 2 =/= 0 |
100 |
99
|
a1i |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> 2 =/= 0 ) |
101 |
88
|
rpne0d |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a =/= 0 ) |
102 |
97 98 100 101
|
recdivd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / ( 2 / a ) ) = ( a / 2 ) ) |
103 |
96 102
|
breqtrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) < ( a / 2 ) ) |
104 |
|
eldmgm |
|- ( -u k e. ( CC \ ( ZZ \ NN ) ) <-> ( -u k e. CC /\ -. -u -u k e. NN0 ) ) |
105 |
104
|
simprbi |
|- ( -u k e. ( CC \ ( ZZ \ NN ) ) -> -. -u -u k e. NN0 ) |
106 |
77
|
negnegd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -u -u k = k ) |
107 |
106 76
|
eqeltrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -u -u k e. NN0 ) |
108 |
105 107
|
nsyl3 |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -. -u k e. ( CC \ ( ZZ \ NN ) ) ) |
109 |
4
|
a1i |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
110 |
34
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( a / 2 ) e. RR* ) |
111 |
77
|
negcld |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -u k e. CC ) |
112 |
|
elbl2 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( a / 2 ) e. RR* ) /\ ( x e. CC /\ -u k e. CC ) ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( x ( abs o. - ) -u k ) < ( a / 2 ) ) ) |
113 |
109 110 75 111 112
|
syl22anc |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( x ( abs o. - ) -u k ) < ( a / 2 ) ) ) |
114 |
51
|
cnmetdval |
|- ( ( x e. CC /\ -u k e. CC ) -> ( x ( abs o. - ) -u k ) = ( abs ` ( x - -u k ) ) ) |
115 |
75 111 114
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( abs o. - ) -u k ) = ( abs ` ( x - -u k ) ) ) |
116 |
75 77
|
subnegd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x - -u k ) = ( x + k ) ) |
117 |
116
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs ` ( x - -u k ) ) = ( abs ` ( x + k ) ) ) |
118 |
115 117
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( abs o. - ) -u k ) = ( abs ` ( x + k ) ) ) |
119 |
118
|
breq1d |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( x ( abs o. - ) -u k ) < ( a / 2 ) <-> ( abs ` ( x + k ) ) < ( a / 2 ) ) ) |
120 |
79 80
|
ltnled |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( abs ` ( x + k ) ) < ( a / 2 ) <-> -. ( a / 2 ) <_ ( abs ` ( x + k ) ) ) ) |
121 |
113 119 120
|
3bitrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> -. ( a / 2 ) <_ ( abs ` ( x + k ) ) ) ) |
122 |
45
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a e. RR ) |
123 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( A ( abs o. - ) x ) < ( a / 2 ) ) |
124 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( a / 2 ) e. RR* ) /\ ( x e. CC /\ A e. CC ) ) -> ( A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( A ( abs o. - ) x ) < ( a / 2 ) ) ) |
125 |
109 110 75 84 124
|
syl22anc |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( A ( abs o. - ) x ) < ( a / 2 ) ) ) |
126 |
123 125
|
mpbird |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) |
127 |
|
blhalf |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ x e. CC ) /\ ( a e. RR /\ A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) ) -> ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( A ( ball ` ( abs o. - ) ) a ) ) |
128 |
109 75 122 126 127
|
syl22anc |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( A ( ball ` ( abs o. - ) ) a ) ) |
129 |
|
simprr |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) |
130 |
129
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) |
131 |
128 130
|
sstrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( CC \ ( ZZ \ NN ) ) ) |
132 |
131
|
sseld |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) -> -u k e. ( CC \ ( ZZ \ NN ) ) ) ) |
133 |
121 132
|
sylbird |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -. ( a / 2 ) <_ ( abs ` ( x + k ) ) -> -u k e. ( CC \ ( ZZ \ NN ) ) ) ) |
134 |
108 133
|
mt3d |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( a / 2 ) <_ ( abs ` ( x + k ) ) ) |
135 |
74 80 79 103 134
|
ltletrd |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) < ( abs ` ( x + k ) ) ) |
136 |
74 79 135
|
ltled |
|- ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) <_ ( abs ` ( x + k ) ) ) |
137 |
136
|
ralrimiva |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) |
138 |
72 137
|
jca |
|- ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) ) |
139 |
138
|
ex |
|- ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) -> ( ( A ( abs o. - ) x ) < ( a / 2 ) -> ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) ) ) |
140 |
139
|
ss2rabdv |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> { x e. CC | ( A ( abs o. - ) x ) < ( a / 2 ) } C_ { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } ) |
141 |
|
blval |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ ( a / 2 ) e. RR* ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) = { x e. CC | ( A ( abs o. - ) x ) < ( a / 2 ) } ) |
142 |
4 31 34 141
|
mp3an2i |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) = { x e. CC | ( A ( abs o. - ) x ) < ( a / 2 ) } ) |
143 |
1
|
a1i |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } ) |
144 |
140 142 143
|
3sstr4d |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ U ) |
145 |
8
|
ssntr |
|- ( ( ( J e. Top /\ U C_ CC ) /\ ( ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) e. J /\ ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ U ) ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( ( int ` J ) ` U ) ) |
146 |
28 30 36 144 145
|
syl22anc |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( ( int ` J ) ` U ) ) |
147 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ ( a / 2 ) e. RR+ ) -> A e. ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) |
148 |
4 31 33 147
|
mp3an2i |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> A e. ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) |
149 |
146 148
|
sseldd |
|- ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> A e. ( ( int ` J ) ` U ) ) |
150 |
149
|
ex |
|- ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) -> ( ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r -> A e. ( ( int ` J ) ` U ) ) ) |
151 |
150
|
reximdva |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( E. r e. NN ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r -> E. r e. NN A e. ( ( int ` J ) ` U ) ) ) |
152 |
26 151
|
mpd |
|- ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> E. r e. NN A e. ( ( int ` J ) ` U ) ) |
153 |
14 152
|
rexlimddv |
|- ( ph -> E. r e. NN A e. ( ( int ` J ) ` U ) ) |