| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamucov.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 2 |  | lgamucov.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | lgamucov.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 4 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 5 |  | difss |  |-  ( ZZ \ NN ) C_ ZZ | 
						
							| 6 | 3 | sszcld |  |-  ( ( ZZ \ NN ) C_ ZZ -> ( ZZ \ NN ) e. ( Clsd ` J ) ) | 
						
							| 7 | 3 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 8 | 7 | toponunii |  |-  CC = U. J | 
						
							| 9 | 8 | cldopn |  |-  ( ( ZZ \ NN ) e. ( Clsd ` J ) -> ( CC \ ( ZZ \ NN ) ) e. J ) | 
						
							| 10 | 5 6 9 | mp2b |  |-  ( CC \ ( ZZ \ NN ) ) e. J | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( CC \ ( ZZ \ NN ) ) e. J ) | 
						
							| 12 | 3 | cnfldtopn |  |-  J = ( MetOpen ` ( abs o. - ) ) | 
						
							| 13 | 12 | mopni2 |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( CC \ ( ZZ \ NN ) ) e. J /\ A e. ( CC \ ( ZZ \ NN ) ) ) -> E. a e. RR+ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 14 | 4 11 2 13 | mp3an2i |  |-  ( ph -> E. a e. RR+ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 15 | 2 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> A e. CC ) | 
						
							| 17 | 16 | abscld |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( abs ` A ) e. RR ) | 
						
							| 18 |  | simprl |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> a e. RR+ ) | 
						
							| 19 | 18 | rpred |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> a e. RR ) | 
						
							| 20 | 17 19 | readdcld |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( ( abs ` A ) + a ) e. RR ) | 
						
							| 21 |  | 2re |  |-  2 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> 2 e. RR ) | 
						
							| 23 | 22 18 | rerpdivcld |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( 2 / a ) e. RR ) | 
						
							| 24 | 20 23 | readdcld |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR ) | 
						
							| 25 |  | arch |  |-  ( ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR -> E. r e. NN ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> E. r e. NN ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) | 
						
							| 27 | 3 | cnfldtop |  |-  J e. Top | 
						
							| 28 | 27 | a1i |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> J e. Top ) | 
						
							| 29 | 1 | ssrab3 |  |-  U C_ CC | 
						
							| 30 | 29 | a1i |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> U C_ CC ) | 
						
							| 31 | 16 | ad2antrr |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> A e. CC ) | 
						
							| 32 | 18 | ad2antrr |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> a e. RR+ ) | 
						
							| 33 | 32 | rphalfcld |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( a / 2 ) e. RR+ ) | 
						
							| 34 | 33 | rpxrd |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( a / 2 ) e. RR* ) | 
						
							| 35 | 12 | blopn |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ ( a / 2 ) e. RR* ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) e. J ) | 
						
							| 36 | 4 31 34 35 | mp3an2i |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) e. J ) | 
						
							| 37 |  | simplr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> x e. CC ) | 
						
							| 38 | 37 | abscld |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) e. RR ) | 
						
							| 39 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> r e. NN ) | 
						
							| 40 | 39 | nnred |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> r e. RR ) | 
						
							| 41 | 24 | ad4antr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR ) | 
						
							| 42 | 20 | ad4antr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` A ) + a ) e. RR ) | 
						
							| 43 | 17 | ad4antr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` A ) e. RR ) | 
						
							| 44 | 38 43 | resubcld |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) e. RR ) | 
						
							| 45 | 19 | ad4antr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> a e. RR ) | 
						
							| 46 | 45 | rehalfcld |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( a / 2 ) e. RR ) | 
						
							| 47 | 31 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> A e. CC ) | 
						
							| 48 | 37 47 | subcld |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( x - A ) e. CC ) | 
						
							| 49 | 48 | abscld |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` ( x - A ) ) e. RR ) | 
						
							| 50 | 37 47 | abs2difd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) <_ ( abs ` ( x - A ) ) ) | 
						
							| 51 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 52 | 51 | cnmetdval |  |-  ( ( A e. CC /\ x e. CC ) -> ( A ( abs o. - ) x ) = ( abs ` ( A - x ) ) ) | 
						
							| 53 | 47 37 52 | syl2anc |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( A ( abs o. - ) x ) = ( abs ` ( A - x ) ) ) | 
						
							| 54 | 47 37 | abssubd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` ( A - x ) ) = ( abs ` ( x - A ) ) ) | 
						
							| 55 | 53 54 | eqtrd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( A ( abs o. - ) x ) = ( abs ` ( x - A ) ) ) | 
						
							| 56 |  | simpr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( A ( abs o. - ) x ) < ( a / 2 ) ) | 
						
							| 57 | 55 56 | eqbrtrrd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` ( x - A ) ) < ( a / 2 ) ) | 
						
							| 58 | 44 49 46 50 57 | lelttrd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) < ( a / 2 ) ) | 
						
							| 59 | 32 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> a e. RR+ ) | 
						
							| 60 |  | rphalflt |  |-  ( a e. RR+ -> ( a / 2 ) < a ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( a / 2 ) < a ) | 
						
							| 62 | 44 46 45 58 61 | lttrd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) - ( abs ` A ) ) < a ) | 
						
							| 63 | 38 43 45 | ltsubadd2d |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( ( abs ` x ) - ( abs ` A ) ) < a <-> ( abs ` x ) < ( ( abs ` A ) + a ) ) ) | 
						
							| 64 | 62 63 | mpbid |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) < ( ( abs ` A ) + a ) ) | 
						
							| 65 |  | 2rp |  |-  2 e. RR+ | 
						
							| 66 | 65 | a1i |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> 2 e. RR+ ) | 
						
							| 67 | 66 59 | rpdivcld |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( 2 / a ) e. RR+ ) | 
						
							| 68 | 42 67 | ltaddrpd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` A ) + a ) < ( ( ( abs ` A ) + a ) + ( 2 / a ) ) ) | 
						
							| 69 | 38 42 41 64 68 | lttrd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) < ( ( ( abs ` A ) + a ) + ( 2 / a ) ) ) | 
						
							| 70 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) | 
						
							| 71 | 38 41 40 69 70 | lttrd |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) < r ) | 
						
							| 72 | 38 40 71 | ltled |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( abs ` x ) <_ r ) | 
						
							| 73 | 39 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> r e. NN ) | 
						
							| 74 | 73 | nnrecred |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) e. RR ) | 
						
							| 75 |  | simpllr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> x e. CC ) | 
						
							| 76 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 77 | 76 | nn0cnd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> k e. CC ) | 
						
							| 78 | 75 77 | addcld |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x + k ) e. CC ) | 
						
							| 79 | 78 | abscld |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs ` ( x + k ) ) e. RR ) | 
						
							| 80 | 46 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( a / 2 ) e. RR ) | 
						
							| 81 | 23 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) e. RR ) | 
						
							| 82 | 41 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) e. RR ) | 
						
							| 83 | 40 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> r e. RR ) | 
						
							| 84 | 47 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A e. CC ) | 
						
							| 85 | 2 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 86 | 85 | dmgmn0 |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A =/= 0 ) | 
						
							| 87 | 84 86 | absrpcld |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs ` A ) e. RR+ ) | 
						
							| 88 | 59 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a e. RR+ ) | 
						
							| 89 | 87 88 | rpaddcld |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( abs ` A ) + a ) e. RR+ ) | 
						
							| 90 | 81 89 | ltaddrp2d |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) < ( ( ( abs ` A ) + a ) + ( 2 / a ) ) ) | 
						
							| 91 |  | simp-4r |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) | 
						
							| 92 | 81 82 83 90 91 | lttrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) < r ) | 
						
							| 93 | 67 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 2 / a ) e. RR+ ) | 
						
							| 94 | 73 | nnrpd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> r e. RR+ ) | 
						
							| 95 | 93 94 | ltrecd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( 2 / a ) < r <-> ( 1 / r ) < ( 1 / ( 2 / a ) ) ) ) | 
						
							| 96 | 92 95 | mpbid |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) < ( 1 / ( 2 / a ) ) ) | 
						
							| 97 |  | 2cnd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> 2 e. CC ) | 
						
							| 98 | 88 | rpcnd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a e. CC ) | 
						
							| 99 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 100 | 99 | a1i |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> 2 =/= 0 ) | 
						
							| 101 | 88 | rpne0d |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a =/= 0 ) | 
						
							| 102 | 97 98 100 101 | recdivd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / ( 2 / a ) ) = ( a / 2 ) ) | 
						
							| 103 | 96 102 | breqtrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) < ( a / 2 ) ) | 
						
							| 104 |  | eldmgm |  |-  ( -u k e. ( CC \ ( ZZ \ NN ) ) <-> ( -u k e. CC /\ -. -u -u k e. NN0 ) ) | 
						
							| 105 | 104 | simprbi |  |-  ( -u k e. ( CC \ ( ZZ \ NN ) ) -> -. -u -u k e. NN0 ) | 
						
							| 106 | 77 | negnegd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -u -u k = k ) | 
						
							| 107 | 106 76 | eqeltrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -u -u k e. NN0 ) | 
						
							| 108 | 105 107 | nsyl3 |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -. -u k e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 109 | 4 | a1i |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 110 | 34 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( a / 2 ) e. RR* ) | 
						
							| 111 | 77 | negcld |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> -u k e. CC ) | 
						
							| 112 |  | elbl2 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( a / 2 ) e. RR* ) /\ ( x e. CC /\ -u k e. CC ) ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( x ( abs o. - ) -u k ) < ( a / 2 ) ) ) | 
						
							| 113 | 109 110 75 111 112 | syl22anc |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( x ( abs o. - ) -u k ) < ( a / 2 ) ) ) | 
						
							| 114 | 51 | cnmetdval |  |-  ( ( x e. CC /\ -u k e. CC ) -> ( x ( abs o. - ) -u k ) = ( abs ` ( x - -u k ) ) ) | 
						
							| 115 | 75 111 114 | syl2anc |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( abs o. - ) -u k ) = ( abs ` ( x - -u k ) ) ) | 
						
							| 116 | 75 77 | subnegd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x - -u k ) = ( x + k ) ) | 
						
							| 117 | 116 | fveq2d |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( abs ` ( x - -u k ) ) = ( abs ` ( x + k ) ) ) | 
						
							| 118 | 115 117 | eqtrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( abs o. - ) -u k ) = ( abs ` ( x + k ) ) ) | 
						
							| 119 | 118 | breq1d |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( x ( abs o. - ) -u k ) < ( a / 2 ) <-> ( abs ` ( x + k ) ) < ( a / 2 ) ) ) | 
						
							| 120 | 79 80 | ltnled |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( ( abs ` ( x + k ) ) < ( a / 2 ) <-> -. ( a / 2 ) <_ ( abs ` ( x + k ) ) ) ) | 
						
							| 121 | 113 119 120 | 3bitrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> -. ( a / 2 ) <_ ( abs ` ( x + k ) ) ) ) | 
						
							| 122 | 45 | adantr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> a e. RR ) | 
						
							| 123 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( A ( abs o. - ) x ) < ( a / 2 ) ) | 
						
							| 124 |  | elbl3 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( a / 2 ) e. RR* ) /\ ( x e. CC /\ A e. CC ) ) -> ( A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( A ( abs o. - ) x ) < ( a / 2 ) ) ) | 
						
							| 125 | 109 110 75 84 124 | syl22anc |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) <-> ( A ( abs o. - ) x ) < ( a / 2 ) ) ) | 
						
							| 126 | 123 125 | mpbird |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) | 
						
							| 127 |  | blhalf |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ x e. CC ) /\ ( a e. RR /\ A e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) ) -> ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( A ( ball ` ( abs o. - ) ) a ) ) | 
						
							| 128 | 109 75 122 126 127 | syl22anc |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( A ( ball ` ( abs o. - ) ) a ) ) | 
						
							| 129 |  | simprr |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 130 | 129 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 131 | 128 130 | sstrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 132 | 131 | sseld |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -u k e. ( x ( ball ` ( abs o. - ) ) ( a / 2 ) ) -> -u k e. ( CC \ ( ZZ \ NN ) ) ) ) | 
						
							| 133 | 121 132 | sylbird |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( -. ( a / 2 ) <_ ( abs ` ( x + k ) ) -> -u k e. ( CC \ ( ZZ \ NN ) ) ) ) | 
						
							| 134 | 108 133 | mt3d |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( a / 2 ) <_ ( abs ` ( x + k ) ) ) | 
						
							| 135 | 74 80 79 103 134 | ltletrd |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) < ( abs ` ( x + k ) ) ) | 
						
							| 136 | 74 79 135 | ltled |  |-  ( ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) /\ k e. NN0 ) -> ( 1 / r ) <_ ( abs ` ( x + k ) ) ) | 
						
							| 137 | 136 | ralrimiva |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) | 
						
							| 138 | 72 137 | jca |  |-  ( ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) /\ ( A ( abs o. - ) x ) < ( a / 2 ) ) -> ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) ) | 
						
							| 139 | 138 | ex |  |-  ( ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) /\ x e. CC ) -> ( ( A ( abs o. - ) x ) < ( a / 2 ) -> ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) ) ) | 
						
							| 140 | 139 | ss2rabdv |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> { x e. CC | ( A ( abs o. - ) x ) < ( a / 2 ) } C_ { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } ) | 
						
							| 141 |  | blval |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ ( a / 2 ) e. RR* ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) = { x e. CC | ( A ( abs o. - ) x ) < ( a / 2 ) } ) | 
						
							| 142 | 4 31 34 141 | mp3an2i |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) = { x e. CC | ( A ( abs o. - ) x ) < ( a / 2 ) } ) | 
						
							| 143 | 1 | a1i |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } ) | 
						
							| 144 | 140 142 143 | 3sstr4d |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ U ) | 
						
							| 145 | 8 | ssntr |  |-  ( ( ( J e. Top /\ U C_ CC ) /\ ( ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) e. J /\ ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ U ) ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( ( int ` J ) ` U ) ) | 
						
							| 146 | 28 30 36 144 145 | syl22anc |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) C_ ( ( int ` J ) ` U ) ) | 
						
							| 147 |  | blcntr |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ ( a / 2 ) e. RR+ ) -> A e. ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) | 
						
							| 148 | 4 31 33 147 | mp3an2i |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> A e. ( A ( ball ` ( abs o. - ) ) ( a / 2 ) ) ) | 
						
							| 149 | 146 148 | sseldd |  |-  ( ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) /\ ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r ) -> A e. ( ( int ` J ) ` U ) ) | 
						
							| 150 | 149 | ex |  |-  ( ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) /\ r e. NN ) -> ( ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r -> A e. ( ( int ` J ) ` U ) ) ) | 
						
							| 151 | 150 | reximdva |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> ( E. r e. NN ( ( ( abs ` A ) + a ) + ( 2 / a ) ) < r -> E. r e. NN A e. ( ( int ` J ) ` U ) ) ) | 
						
							| 152 | 26 151 | mpd |  |-  ( ( ph /\ ( a e. RR+ /\ ( A ( ball ` ( abs o. - ) ) a ) C_ ( CC \ ( ZZ \ NN ) ) ) ) -> E. r e. NN A e. ( ( int ` J ) ` U ) ) | 
						
							| 153 | 14 152 | rexlimddv |  |-  ( ph -> E. r e. NN A e. ( ( int ` J ) ` U ) ) |