| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamucov.u |  |-  U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } | 
						
							| 2 |  | lgamucov.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | lgamcvglem.g |  |-  G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 4 | 1 2 | lgamucov2 |  |-  ( ph -> E. r e. NN A e. U ) | 
						
							| 5 |  | fveq2 |  |-  ( z = A -> ( log_G ` z ) = ( log_G ` A ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( z = A -> ( ( log_G ` z ) e. CC <-> ( log_G ` A ) e. CC ) ) | 
						
							| 7 |  | simprl |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> r e. NN ) | 
						
							| 8 |  | fveq2 |  |-  ( x = t -> ( abs ` x ) = ( abs ` t ) ) | 
						
							| 9 | 8 | breq1d |  |-  ( x = t -> ( ( abs ` x ) <_ r <-> ( abs ` t ) <_ r ) ) | 
						
							| 10 |  | fvoveq1 |  |-  ( x = t -> ( abs ` ( x + k ) ) = ( abs ` ( t + k ) ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( x = t -> ( ( 1 / r ) <_ ( abs ` ( x + k ) ) <-> ( 1 / r ) <_ ( abs ` ( t + k ) ) ) ) | 
						
							| 12 | 11 | ralbidv |  |-  ( x = t -> ( A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) ) | 
						
							| 13 | 9 12 | anbi12d |  |-  ( x = t -> ( ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` t ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) ) ) | 
						
							| 14 | 13 | cbvrabv |  |-  { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } = { t e. CC | ( ( abs ` t ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) } | 
						
							| 15 | 1 14 | eqtri |  |-  U = { t e. CC | ( ( abs ` t ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) } | 
						
							| 16 |  | eqid |  |-  ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) = ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) | 
						
							| 17 | 7 15 16 | lgamgulm2 |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( A. z e. U ( log_G ` z ) e. CC /\ seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) ) | 
						
							| 18 | 17 | simpld |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> A. z e. U ( log_G ` z ) e. CC ) | 
						
							| 19 |  | simprr |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> A e. U ) | 
						
							| 20 | 6 18 19 | rspcdva |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( log_G ` A ) e. CC ) | 
						
							| 21 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 22 |  | 1zzd |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> 1 e. ZZ ) | 
						
							| 23 |  | 1z |  |-  1 e. ZZ | 
						
							| 24 |  | seqfn |  |-  ( 1 e. ZZ -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 25 | 23 24 | ax-mp |  |-  seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn ( ZZ>= ` 1 ) | 
						
							| 26 | 21 | fneq2i |  |-  ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn NN <-> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 27 | 25 26 | mpbir |  |-  seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn NN | 
						
							| 28 | 17 | simprd |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) | 
						
							| 29 |  | ulmf2 |  |-  ( ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn NN /\ seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) : NN --> ( CC ^m U ) ) | 
						
							| 30 | 27 28 29 | sylancr |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) : NN --> ( CC ^m U ) ) | 
						
							| 31 |  | seqex |  |-  seq 1 ( + , G ) e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( + , G ) e. _V ) | 
						
							| 33 |  | cnex |  |-  CC e. _V | 
						
							| 34 | 1 33 | rabex2 |  |-  U e. _V | 
						
							| 35 | 34 | a1i |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> U e. _V ) | 
						
							| 36 |  | simpr |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> n e. NN ) | 
						
							| 37 | 36 21 | eleqtrdi |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 38 |  | fz1ssnn |  |-  ( 1 ... n ) C_ NN | 
						
							| 39 | 38 | a1i |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( 1 ... n ) C_ NN ) | 
						
							| 40 |  | ovexd |  |-  ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ ( m e. NN /\ z e. U ) ) -> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) e. _V ) | 
						
							| 41 | 35 37 39 40 | seqof2 |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) = ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ) | 
						
							| 42 |  | simplr |  |-  ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> z = A ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( z x. ( log ` ( ( m + 1 ) / m ) ) ) = ( A x. ( log ` ( ( m + 1 ) / m ) ) ) ) | 
						
							| 44 | 42 | oveq1d |  |-  ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( z / m ) = ( A / m ) ) | 
						
							| 45 | 44 | fvoveq1d |  |-  ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( log ` ( ( z / m ) + 1 ) ) = ( log ` ( ( A / m ) + 1 ) ) ) | 
						
							| 46 | 43 45 | oveq12d |  |-  ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) = ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 47 | 46 | mpteq2dva |  |-  ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) | 
						
							| 48 | 47 3 | eqtr4di |  |-  ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) = G ) | 
						
							| 49 | 48 | seqeq3d |  |-  ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) = seq 1 ( + , G ) ) | 
						
							| 50 | 49 | fveq1d |  |-  ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) = ( seq 1 ( + , G ) ` n ) ) | 
						
							| 51 |  | simplrr |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> A e. U ) | 
						
							| 52 |  | fvexd |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( seq 1 ( + , G ) ` n ) e. _V ) | 
						
							| 53 | 41 50 51 52 | fvmptd |  |-  ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) ` A ) = ( seq 1 ( + , G ) ` n ) ) | 
						
							| 54 | 21 22 30 19 32 53 28 | ulmclm |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( + , G ) ~~> ( ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ` A ) ) | 
						
							| 55 |  | fveq2 |  |-  ( z = A -> ( log ` z ) = ( log ` A ) ) | 
						
							| 56 | 5 55 | oveq12d |  |-  ( z = A -> ( ( log_G ` z ) + ( log ` z ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 57 |  | eqid |  |-  ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) = ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) | 
						
							| 58 |  | ovex |  |-  ( ( log_G ` A ) + ( log ` A ) ) e. _V | 
						
							| 59 | 56 57 58 | fvmpt |  |-  ( A e. U -> ( ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ` A ) = ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 60 | 19 59 | syl |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ` A ) = ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 61 | 54 60 | breqtrd |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 62 | 20 61 | jca |  |-  ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( ( log_G ` A ) e. CC /\ seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) ) | 
						
							| 63 | 4 62 | rexlimddv |  |-  ( ph -> ( ( log_G ` A ) e. CC /\ seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) ) |