Step |
Hyp |
Ref |
Expression |
1 |
|
lgamucov.u |
|- U = { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } |
2 |
|
lgamucov.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
3 |
|
lgamcvglem.g |
|- G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
4 |
1 2
|
lgamucov2 |
|- ( ph -> E. r e. NN A e. U ) |
5 |
|
fveq2 |
|- ( z = A -> ( log_G ` z ) = ( log_G ` A ) ) |
6 |
5
|
eleq1d |
|- ( z = A -> ( ( log_G ` z ) e. CC <-> ( log_G ` A ) e. CC ) ) |
7 |
|
simprl |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> r e. NN ) |
8 |
|
fveq2 |
|- ( x = t -> ( abs ` x ) = ( abs ` t ) ) |
9 |
8
|
breq1d |
|- ( x = t -> ( ( abs ` x ) <_ r <-> ( abs ` t ) <_ r ) ) |
10 |
|
fvoveq1 |
|- ( x = t -> ( abs ` ( x + k ) ) = ( abs ` ( t + k ) ) ) |
11 |
10
|
breq2d |
|- ( x = t -> ( ( 1 / r ) <_ ( abs ` ( x + k ) ) <-> ( 1 / r ) <_ ( abs ` ( t + k ) ) ) ) |
12 |
11
|
ralbidv |
|- ( x = t -> ( A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) <-> A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) ) |
13 |
9 12
|
anbi12d |
|- ( x = t -> ( ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) <-> ( ( abs ` t ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) ) ) |
14 |
13
|
cbvrabv |
|- { x e. CC | ( ( abs ` x ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( x + k ) ) ) } = { t e. CC | ( ( abs ` t ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) } |
15 |
1 14
|
eqtri |
|- U = { t e. CC | ( ( abs ` t ) <_ r /\ A. k e. NN0 ( 1 / r ) <_ ( abs ` ( t + k ) ) ) } |
16 |
|
eqid |
|- ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) = ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) |
17 |
7 15 16
|
lgamgulm2 |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( A. z e. U ( log_G ` z ) e. CC /\ seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) ) |
18 |
17
|
simpld |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> A. z e. U ( log_G ` z ) e. CC ) |
19 |
|
simprr |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> A e. U ) |
20 |
6 18 19
|
rspcdva |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( log_G ` A ) e. CC ) |
21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
22 |
|
1zzd |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> 1 e. ZZ ) |
23 |
|
1z |
|- 1 e. ZZ |
24 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn ( ZZ>= ` 1 ) ) |
25 |
23 24
|
ax-mp |
|- seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn ( ZZ>= ` 1 ) |
26 |
21
|
fneq2i |
|- ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn NN <-> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn ( ZZ>= ` 1 ) ) |
27 |
25 26
|
mpbir |
|- seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn NN |
28 |
17
|
simprd |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) |
29 |
|
ulmf2 |
|- ( ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) Fn NN /\ seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ( ~~>u ` U ) ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ) -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) : NN --> ( CC ^m U ) ) |
30 |
27 28 29
|
sylancr |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) : NN --> ( CC ^m U ) ) |
31 |
|
seqex |
|- seq 1 ( + , G ) e. _V |
32 |
31
|
a1i |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( + , G ) e. _V ) |
33 |
|
cnex |
|- CC e. _V |
34 |
1 33
|
rabex2 |
|- U e. _V |
35 |
34
|
a1i |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> U e. _V ) |
36 |
|
simpr |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> n e. NN ) |
37 |
36 21
|
eleqtrdi |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
38 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
39 |
38
|
a1i |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( 1 ... n ) C_ NN ) |
40 |
|
ovexd |
|- ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ ( m e. NN /\ z e. U ) ) -> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) e. _V ) |
41 |
35 37 39 40
|
seqof2 |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) = ( z e. U |-> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) ) ) |
42 |
|
simplr |
|- ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> z = A ) |
43 |
42
|
oveq1d |
|- ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( z x. ( log ` ( ( m + 1 ) / m ) ) ) = ( A x. ( log ` ( ( m + 1 ) / m ) ) ) ) |
44 |
42
|
oveq1d |
|- ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( z / m ) = ( A / m ) ) |
45 |
44
|
fvoveq1d |
|- ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( log ` ( ( z / m ) + 1 ) ) = ( log ` ( ( A / m ) + 1 ) ) ) |
46 |
43 45
|
oveq12d |
|- ( ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) /\ m e. NN ) -> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) = ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
47 |
46
|
mpteq2dva |
|- ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) |
48 |
47 3
|
eqtr4di |
|- ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) = G ) |
49 |
48
|
seqeq3d |
|- ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) = seq 1 ( + , G ) ) |
50 |
49
|
fveq1d |
|- ( ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) /\ z = A ) -> ( seq 1 ( + , ( m e. NN |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ` n ) = ( seq 1 ( + , G ) ` n ) ) |
51 |
|
simplrr |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> A e. U ) |
52 |
|
fvexd |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( seq 1 ( + , G ) ` n ) e. _V ) |
53 |
41 50 51 52
|
fvmptd |
|- ( ( ( ph /\ ( r e. NN /\ A e. U ) ) /\ n e. NN ) -> ( ( seq 1 ( oF + , ( m e. NN |-> ( z e. U |-> ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) ) ) ) ` n ) ` A ) = ( seq 1 ( + , G ) ` n ) ) |
54 |
21 22 30 19 32 53 28
|
ulmclm |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( + , G ) ~~> ( ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ` A ) ) |
55 |
|
fveq2 |
|- ( z = A -> ( log ` z ) = ( log ` A ) ) |
56 |
5 55
|
oveq12d |
|- ( z = A -> ( ( log_G ` z ) + ( log ` z ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) |
57 |
|
eqid |
|- ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) = ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) |
58 |
|
ovex |
|- ( ( log_G ` A ) + ( log ` A ) ) e. _V |
59 |
56 57 58
|
fvmpt |
|- ( A e. U -> ( ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ` A ) = ( ( log_G ` A ) + ( log ` A ) ) ) |
60 |
19 59
|
syl |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( ( z e. U |-> ( ( log_G ` z ) + ( log ` z ) ) ) ` A ) = ( ( log_G ` A ) + ( log ` A ) ) ) |
61 |
54 60
|
breqtrd |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) |
62 |
20 61
|
jca |
|- ( ( ph /\ ( r e. NN /\ A e. U ) ) -> ( ( log_G ` A ) e. CC /\ seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) ) |
63 |
4 62
|
rexlimddv |
|- ( ph -> ( ( log_G ` A ) e. CC /\ seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) ) |