Metamath Proof Explorer


Theorem lgamcvg

Description: The series G converges to log_G ( A ) + log ( A ) . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g
|- G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) )
lgamcvg.a
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) )
Assertion lgamcvg
|- ( ph -> seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) )

Proof

Step Hyp Ref Expression
1 lgamcvg.g
 |-  G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) )
2 lgamcvg.a
 |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) )
3 eqid
 |-  { x e. CC | ( ( abs ` x ) <_ y /\ A. k e. NN0 ( 1 / y ) <_ ( abs ` ( x + k ) ) ) } = { x e. CC | ( ( abs ` x ) <_ y /\ A. k e. NN0 ( 1 / y ) <_ ( abs ` ( x + k ) ) ) }
4 3 2 1 lgamcvglem
 |-  ( ph -> ( ( log_G ` A ) e. CC /\ seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) )
5 4 simprd
 |-  ( ph -> seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) )