| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamcvg.g |  |-  G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 2 |  | lgamcvg.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 4 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 5 |  | eqid |  |-  ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) | 
						
							| 6 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 7 | 6 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 8 | 2 7 | dmgmaddnn0 |  |-  ( ph -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 9 | 5 8 | lgamcvg |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) ) | 
						
							| 10 |  | seqex |  |-  seq 1 ( + , G ) e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> seq 1 ( + , G ) e. _V ) | 
						
							| 12 | 2 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 13 | 12 | abscld |  |-  ( ph -> ( abs ` A ) e. RR ) | 
						
							| 14 |  | arch |  |-  ( ( abs ` A ) e. RR -> E. r e. NN ( abs ` A ) < r ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> E. r e. NN ( abs ` A ) < r ) | 
						
							| 16 |  | eqid |  |-  ( ZZ>= ` r ) = ( ZZ>= ` r ) | 
						
							| 17 |  | simprl |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> r e. NN ) | 
						
							| 18 | 17 | nnzd |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> r e. ZZ ) | 
						
							| 19 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 20 | 19 | logcn |  |-  ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) | 
						
							| 22 |  | eqid |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 23 | 22 | dvlog2lem |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) | 
						
							| 24 | 12 | ad2antrr |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> A e. CC ) | 
						
							| 25 |  | eluznn |  |-  ( ( r e. NN /\ m e. ( ZZ>= ` r ) ) -> m e. NN ) | 
						
							| 26 | 25 | ex |  |-  ( r e. NN -> ( m e. ( ZZ>= ` r ) -> m e. NN ) ) | 
						
							| 27 | 26 | ad2antrl |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) -> m e. NN ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> m e. NN ) | 
						
							| 29 | 28 | nncnd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> m e. CC ) | 
						
							| 30 |  | 1cnd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. CC ) | 
						
							| 31 | 29 30 | addcld |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. CC ) | 
						
							| 32 | 28 | peano2nnd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. NN ) | 
						
							| 33 | 32 | nnne0d |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) =/= 0 ) | 
						
							| 34 | 24 31 33 | divcld |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( A / ( m + 1 ) ) e. CC ) | 
						
							| 35 | 34 30 | addcld |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. CC ) | 
						
							| 36 |  | ax-1cn |  |-  1 e. CC | 
						
							| 37 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 38 | 37 | cnmetdval |  |-  ( ( ( ( A / ( m + 1 ) ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) ) | 
						
							| 39 | 35 36 38 | sylancl |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) ) | 
						
							| 40 | 34 30 | pncand |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) = ( A / ( m + 1 ) ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) = ( abs ` ( A / ( m + 1 ) ) ) ) | 
						
							| 42 | 24 31 33 | absdivd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( A / ( m + 1 ) ) ) = ( ( abs ` A ) / ( abs ` ( m + 1 ) ) ) ) | 
						
							| 43 | 32 | nnred |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. RR ) | 
						
							| 44 | 32 | nnrpd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. RR+ ) | 
						
							| 45 | 44 | rpge0d |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 0 <_ ( m + 1 ) ) | 
						
							| 46 | 43 45 | absidd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( m + 1 ) ) = ( m + 1 ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( abs ` A ) / ( abs ` ( m + 1 ) ) ) = ( ( abs ` A ) / ( m + 1 ) ) ) | 
						
							| 48 | 42 47 | eqtrd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( A / ( m + 1 ) ) ) = ( ( abs ` A ) / ( m + 1 ) ) ) | 
						
							| 49 | 39 41 48 | 3eqtrd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( ( abs ` A ) / ( m + 1 ) ) ) | 
						
							| 50 | 13 | ad2antrr |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) e. RR ) | 
						
							| 51 | 17 | adantr |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r e. NN ) | 
						
							| 52 | 51 | nnred |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r e. RR ) | 
						
							| 53 |  | simplrr |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < r ) | 
						
							| 54 |  | eluzle |  |-  ( m e. ( ZZ>= ` r ) -> r <_ m ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r <_ m ) | 
						
							| 56 |  | nnleltp1 |  |-  ( ( r e. NN /\ m e. NN ) -> ( r <_ m <-> r < ( m + 1 ) ) ) | 
						
							| 57 | 51 28 56 | syl2anc |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( r <_ m <-> r < ( m + 1 ) ) ) | 
						
							| 58 | 55 57 | mpbid |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r < ( m + 1 ) ) | 
						
							| 59 | 50 52 43 53 58 | lttrd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < ( m + 1 ) ) | 
						
							| 60 | 31 | mulridd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( m + 1 ) x. 1 ) = ( m + 1 ) ) | 
						
							| 61 | 59 60 | breqtrrd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < ( ( m + 1 ) x. 1 ) ) | 
						
							| 62 |  | 1red |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. RR ) | 
						
							| 63 | 50 62 44 | ltdivmuld |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( abs ` A ) / ( m + 1 ) ) < 1 <-> ( abs ` A ) < ( ( m + 1 ) x. 1 ) ) ) | 
						
							| 64 | 61 63 | mpbird |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( abs ` A ) / ( m + 1 ) ) < 1 ) | 
						
							| 65 | 49 64 | eqbrtrd |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) | 
						
							| 66 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 67 | 66 | a1i |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 68 |  | 1rp |  |-  1 e. RR+ | 
						
							| 69 |  | rpxr |  |-  ( 1 e. RR+ -> 1 e. RR* ) | 
						
							| 70 | 68 69 | mp1i |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. RR* ) | 
						
							| 71 |  | elbl3 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( ( A / ( m + 1 ) ) + 1 ) e. CC ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) ) | 
						
							| 72 | 67 70 30 35 71 | syl22anc |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) ) | 
						
							| 73 | 65 72 | mpbird |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 74 | 23 73 | sselid |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 75 | 74 | fmpttd |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) : ( ZZ>= ` r ) --> ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 76 | 27 | ssrdv |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ZZ>= ` r ) C_ NN ) | 
						
							| 77 | 76 | resmptd |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) = ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) | 
						
							| 78 |  | nnex |  |-  NN e. _V | 
						
							| 79 | 78 | mptex |  |-  ( m e. NN |-> ( A / ( m + 1 ) ) ) e. _V | 
						
							| 80 | 79 | a1i |  |-  ( ph -> ( m e. NN |-> ( A / ( m + 1 ) ) ) e. _V ) | 
						
							| 81 |  | oveq1 |  |-  ( m = n -> ( m + 1 ) = ( n + 1 ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( m = n -> ( A / ( m + 1 ) ) = ( A / ( n + 1 ) ) ) | 
						
							| 83 |  | eqid |  |-  ( m e. NN |-> ( A / ( m + 1 ) ) ) = ( m e. NN |-> ( A / ( m + 1 ) ) ) | 
						
							| 84 |  | ovex |  |-  ( A / ( n + 1 ) ) e. _V | 
						
							| 85 | 82 83 84 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) = ( A / ( n + 1 ) ) ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) = ( A / ( n + 1 ) ) ) | 
						
							| 87 | 3 4 12 4 80 86 | divcnvshft |  |-  ( ph -> ( m e. NN |-> ( A / ( m + 1 ) ) ) ~~> 0 ) | 
						
							| 88 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 89 | 78 | mptex |  |-  ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V | 
						
							| 90 | 89 | a1i |  |-  ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V ) | 
						
							| 91 | 12 | adantr |  |-  ( ( ph /\ n e. NN ) -> A e. CC ) | 
						
							| 92 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 93 | 92 | nncnd |  |-  ( ( ph /\ n e. NN ) -> n e. CC ) | 
						
							| 94 |  | 1cnd |  |-  ( ( ph /\ n e. NN ) -> 1 e. CC ) | 
						
							| 95 | 93 94 | addcld |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. CC ) | 
						
							| 96 | 92 | peano2nnd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 97 | 96 | nnne0d |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) =/= 0 ) | 
						
							| 98 | 91 95 97 | divcld |  |-  ( ( ph /\ n e. NN ) -> ( A / ( n + 1 ) ) e. CC ) | 
						
							| 99 | 86 98 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) e. CC ) | 
						
							| 100 | 82 | oveq1d |  |-  ( m = n -> ( ( A / ( m + 1 ) ) + 1 ) = ( ( A / ( n + 1 ) ) + 1 ) ) | 
						
							| 101 |  | eqid |  |-  ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) = ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) | 
						
							| 102 |  | ovex |  |-  ( ( A / ( n + 1 ) ) + 1 ) e. _V | 
						
							| 103 | 100 101 102 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( A / ( n + 1 ) ) + 1 ) ) | 
						
							| 104 | 103 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( A / ( n + 1 ) ) + 1 ) ) | 
						
							| 105 | 86 | oveq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) + 1 ) = ( ( A / ( n + 1 ) ) + 1 ) ) | 
						
							| 106 | 104 105 | eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) + 1 ) ) | 
						
							| 107 | 3 4 87 88 90 99 106 | climaddc1 |  |-  ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> ( 0 + 1 ) ) | 
						
							| 108 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 109 | 107 108 | breqtrdi |  |-  ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) | 
						
							| 111 |  | climres |  |-  ( ( r e. ZZ /\ ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V ) -> ( ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 <-> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) ) | 
						
							| 112 | 18 89 111 | sylancl |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 <-> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) ) | 
						
							| 113 | 110 112 | mpbird |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 ) | 
						
							| 114 | 77 113 | eqbrtrrd |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) | 
						
							| 115 | 68 | a1i |  |-  ( 1 e. RR -> 1 e. RR+ ) | 
						
							| 116 | 19 | ellogdm |  |-  ( 1 e. ( CC \ ( -oo (,] 0 ) ) <-> ( 1 e. CC /\ ( 1 e. RR -> 1 e. RR+ ) ) ) | 
						
							| 117 | 36 115 116 | mpbir2an |  |-  1 e. ( CC \ ( -oo (,] 0 ) ) | 
						
							| 118 | 117 | a1i |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> 1 e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 119 | 16 18 21 75 114 118 | climcncf |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) ) | 
						
							| 120 |  | logf1o |  |-  log : ( CC \ { 0 } ) -1-1-onto-> ran log | 
						
							| 121 |  | f1of |  |-  ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) | 
						
							| 122 | 120 121 | mp1i |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> log : ( CC \ { 0 } ) --> ran log ) | 
						
							| 123 | 19 | logdmss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) | 
						
							| 124 | 123 74 | sselid |  |-  ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( CC \ { 0 } ) ) | 
						
							| 125 | 122 124 | cofmpt |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( m e. ( ZZ>= ` r ) |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) | 
						
							| 126 |  | frn |  |-  ( ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) : ( ZZ>= ` r ) --> ( CC \ ( -oo (,] 0 ) ) -> ran ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 127 |  | cores |  |-  ( ran ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ) | 
						
							| 128 | 75 126 127 | 3syl |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ) | 
						
							| 129 | 76 | resmptd |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) = ( m e. ( ZZ>= ` r ) |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) | 
						
							| 130 | 125 128 129 | 3eqtr4d |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ) | 
						
							| 131 |  | fvres |  |-  ( 1 e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = ( log ` 1 ) ) | 
						
							| 132 | 117 131 | mp1i |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = ( log ` 1 ) ) | 
						
							| 133 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 134 | 132 133 | eqtrdi |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = 0 ) | 
						
							| 135 | 119 130 134 | 3brtr3d |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 ) | 
						
							| 136 | 78 | mptex |  |-  ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) e. _V | 
						
							| 137 |  | climres |  |-  ( ( r e. ZZ /\ ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) e. _V ) -> ( ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 <-> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) ) | 
						
							| 138 | 18 136 137 | sylancl |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 <-> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) ) | 
						
							| 139 | 135 138 | mpbid |  |-  ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) | 
						
							| 140 | 15 139 | rexlimddv |  |-  ( ph -> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) | 
						
							| 141 | 12 88 | addcld |  |-  ( ph -> ( A + 1 ) e. CC ) | 
						
							| 142 | 8 | dmgmn0 |  |-  ( ph -> ( A + 1 ) =/= 0 ) | 
						
							| 143 | 141 142 | logcld |  |-  ( ph -> ( log ` ( A + 1 ) ) e. CC ) | 
						
							| 144 | 78 | mptex |  |-  ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) e. _V | 
						
							| 145 | 144 | a1i |  |-  ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) e. _V ) | 
						
							| 146 | 82 | fvoveq1d |  |-  ( m = n -> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) | 
						
							| 147 |  | eqid |  |-  ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) | 
						
							| 148 |  | fvex |  |-  ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) e. _V | 
						
							| 149 | 146 147 148 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) | 
						
							| 150 | 149 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) | 
						
							| 151 | 98 94 | addcld |  |-  ( ( ph /\ n e. NN ) -> ( ( A / ( n + 1 ) ) + 1 ) e. CC ) | 
						
							| 152 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 153 | 152 96 | dmgmdivn0 |  |-  ( ( ph /\ n e. NN ) -> ( ( A / ( n + 1 ) ) + 1 ) =/= 0 ) | 
						
							| 154 | 151 153 | logcld |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) e. CC ) | 
						
							| 155 | 150 154 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) e. CC ) | 
						
							| 156 | 146 | oveq2d |  |-  ( m = n -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 157 |  | eqid |  |-  ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) = ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) | 
						
							| 158 |  | ovex |  |-  ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) e. _V | 
						
							| 159 | 156 157 158 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 160 | 159 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 161 | 150 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 162 | 160 161 | eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) ) ) | 
						
							| 163 | 3 4 140 143 145 155 162 | climsubc2 |  |-  ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ~~> ( ( log ` ( A + 1 ) ) - 0 ) ) | 
						
							| 164 | 143 | subid1d |  |-  ( ph -> ( ( log ` ( A + 1 ) ) - 0 ) = ( log ` ( A + 1 ) ) ) | 
						
							| 165 | 163 164 | breqtrd |  |-  ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ~~> ( log ` ( A + 1 ) ) ) | 
						
							| 166 |  | elfznn |  |-  ( k e. ( 1 ... n ) -> k e. NN ) | 
						
							| 167 | 166 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) | 
						
							| 168 |  | oveq1 |  |-  ( m = k -> ( m + 1 ) = ( k + 1 ) ) | 
						
							| 169 |  | id |  |-  ( m = k -> m = k ) | 
						
							| 170 | 168 169 | oveq12d |  |-  ( m = k -> ( ( m + 1 ) / m ) = ( ( k + 1 ) / k ) ) | 
						
							| 171 | 170 | fveq2d |  |-  ( m = k -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( k + 1 ) / k ) ) ) | 
						
							| 172 | 171 | oveq2d |  |-  ( m = k -> ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) = ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) ) | 
						
							| 173 |  | oveq2 |  |-  ( m = k -> ( ( A + 1 ) / m ) = ( ( A + 1 ) / k ) ) | 
						
							| 174 | 173 | fvoveq1d |  |-  ( m = k -> ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) = ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) | 
						
							| 175 | 172 174 | oveq12d |  |-  ( m = k -> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) | 
						
							| 176 |  | ovex |  |-  ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. _V | 
						
							| 177 | 175 5 176 | fvmpt |  |-  ( k e. NN -> ( ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ` k ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) | 
						
							| 178 | 167 177 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ` k ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) | 
						
							| 179 | 92 3 | eleqtrdi |  |-  ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 180 | 12 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. CC ) | 
						
							| 181 |  | 1cnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> 1 e. CC ) | 
						
							| 182 | 180 181 | addcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + 1 ) e. CC ) | 
						
							| 183 | 167 | peano2nnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. NN ) | 
						
							| 184 | 183 | nnrpd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. RR+ ) | 
						
							| 185 | 167 | nnrpd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. RR+ ) | 
						
							| 186 | 184 185 | rpdivcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k + 1 ) / k ) e. RR+ ) | 
						
							| 187 | 186 | relogcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) e. RR ) | 
						
							| 188 | 187 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) e. CC ) | 
						
							| 189 | 182 188 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) | 
						
							| 190 | 167 | nncnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. CC ) | 
						
							| 191 | 167 | nnne0d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k =/= 0 ) | 
						
							| 192 | 182 190 191 | divcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) / k ) e. CC ) | 
						
							| 193 | 192 181 | addcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) e. CC ) | 
						
							| 194 | 8 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 195 | 194 167 | dmgmdivn0 |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) =/= 0 ) | 
						
							| 196 | 193 195 | logcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) e. CC ) | 
						
							| 197 | 189 196 | subcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) | 
						
							| 198 | 178 179 197 | fsumser |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) = ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) ) | 
						
							| 199 |  | fzfid |  |-  ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. Fin ) | 
						
							| 200 | 199 197 | fsumcl |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) | 
						
							| 201 | 198 200 | eqeltrrd |  |-  ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) e. CC ) | 
						
							| 202 | 143 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( A + 1 ) ) e. CC ) | 
						
							| 203 | 202 154 | subcld |  |-  ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) e. CC ) | 
						
							| 204 | 160 203 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) e. CC ) | 
						
							| 205 | 180 188 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) | 
						
							| 206 | 180 190 191 | divcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A / k ) e. CC ) | 
						
							| 207 | 206 181 | addcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / k ) + 1 ) e. CC ) | 
						
							| 208 | 2 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 209 | 208 167 | dmgmdivn0 |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / k ) + 1 ) =/= 0 ) | 
						
							| 210 | 207 209 | logcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / k ) + 1 ) ) e. CC ) | 
						
							| 211 | 205 210 | subcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) | 
						
							| 212 | 199 211 | fsumcl |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) | 
						
							| 213 | 200 212 | nncand |  |-  ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 214 | 189 196 205 210 | sub4d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) | 
						
							| 215 | 180 181 | pncan2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) - A ) = 1 ) | 
						
							| 216 | 215 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) - A ) x. ( log ` ( ( k + 1 ) / k ) ) ) = ( 1 x. ( log ` ( ( k + 1 ) / k ) ) ) ) | 
						
							| 217 | 182 180 188 | subdird |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) - A ) x. ( log ` ( ( k + 1 ) / k ) ) ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) ) | 
						
							| 218 | 188 | mullidd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 1 x. ( log ` ( ( k + 1 ) / k ) ) ) = ( log ` ( ( k + 1 ) / k ) ) ) | 
						
							| 219 | 216 217 218 | 3eqtr3d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( log ` ( ( k + 1 ) / k ) ) ) | 
						
							| 220 | 219 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) | 
						
							| 221 | 188 196 210 | subsubd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) + ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 222 | 188 196 | subcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) | 
						
							| 223 | 222 210 | addcomd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) + ( log ` ( ( A / k ) + 1 ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) ) | 
						
							| 224 | 210 196 188 | subsub2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) ) | 
						
							| 225 | 183 | nncnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. CC ) | 
						
							| 226 | 180 225 | addcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + ( k + 1 ) ) e. CC ) | 
						
							| 227 | 183 | nnnn0d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. NN0 ) | 
						
							| 228 |  | dmgmaddn0 |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ ( k + 1 ) e. NN0 ) -> ( A + ( k + 1 ) ) =/= 0 ) | 
						
							| 229 | 208 227 228 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + ( k + 1 ) ) =/= 0 ) | 
						
							| 230 | 226 229 | logcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( A + ( k + 1 ) ) ) e. CC ) | 
						
							| 231 | 184 | relogcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( k + 1 ) ) e. RR ) | 
						
							| 232 | 231 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( k + 1 ) ) e. CC ) | 
						
							| 233 | 185 | relogcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` k ) e. RR ) | 
						
							| 234 | 233 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` k ) e. CC ) | 
						
							| 235 | 230 232 234 | nnncan2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) - ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) | 
						
							| 236 | 182 190 190 191 | divdird |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) + k ) / k ) = ( ( ( A + 1 ) / k ) + ( k / k ) ) ) | 
						
							| 237 | 180 190 181 | add32d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + k ) + 1 ) = ( ( A + 1 ) + k ) ) | 
						
							| 238 | 180 190 181 | addassd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + k ) + 1 ) = ( A + ( k + 1 ) ) ) | 
						
							| 239 | 237 238 | eqtr3d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) + k ) = ( A + ( k + 1 ) ) ) | 
						
							| 240 | 239 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) + k ) / k ) = ( ( A + ( k + 1 ) ) / k ) ) | 
						
							| 241 | 190 191 | dividd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k / k ) = 1 ) | 
						
							| 242 | 241 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + ( k / k ) ) = ( ( ( A + 1 ) / k ) + 1 ) ) | 
						
							| 243 | 236 240 242 | 3eqtr3rd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) = ( ( A + ( k + 1 ) ) / k ) ) | 
						
							| 244 | 243 | fveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) = ( log ` ( ( A + ( k + 1 ) ) / k ) ) ) | 
						
							| 245 |  | logdiv2 |  |-  ( ( ( A + ( k + 1 ) ) e. CC /\ ( A + ( k + 1 ) ) =/= 0 /\ k e. RR+ ) -> ( log ` ( ( A + ( k + 1 ) ) / k ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) | 
						
							| 246 | 226 229 185 245 | syl3anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A + ( k + 1 ) ) / k ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) | 
						
							| 247 | 244 246 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) | 
						
							| 248 | 184 185 | relogdivd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) = ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) | 
						
							| 249 | 247 248 | oveq12d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) = ( ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) - ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) ) | 
						
							| 250 | 183 | nnne0d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) =/= 0 ) | 
						
							| 251 | 180 225 225 250 | divdird |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + ( k + 1 ) ) / ( k + 1 ) ) = ( ( A / ( k + 1 ) ) + ( ( k + 1 ) / ( k + 1 ) ) ) ) | 
						
							| 252 | 225 250 | dividd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k + 1 ) / ( k + 1 ) ) = 1 ) | 
						
							| 253 | 252 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / ( k + 1 ) ) + ( ( k + 1 ) / ( k + 1 ) ) ) = ( ( A / ( k + 1 ) ) + 1 ) ) | 
						
							| 254 | 251 253 | eqtr2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / ( k + 1 ) ) + 1 ) = ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) | 
						
							| 255 | 254 | fveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) = ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) ) | 
						
							| 256 |  | logdiv2 |  |-  ( ( ( A + ( k + 1 ) ) e. CC /\ ( A + ( k + 1 ) ) =/= 0 /\ ( k + 1 ) e. RR+ ) -> ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) | 
						
							| 257 | 226 229 184 256 | syl3anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) | 
						
							| 258 | 255 257 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) | 
						
							| 259 | 235 249 258 | 3eqtr4d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) = ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) | 
						
							| 260 | 259 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) | 
						
							| 261 | 224 260 | eqtr3d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) | 
						
							| 262 | 221 223 261 | 3eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) | 
						
							| 263 | 214 220 262 | 3eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) | 
						
							| 264 | 263 | sumeq2dv |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) | 
						
							| 265 | 199 197 211 | fsumsub |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) | 
						
							| 266 |  | oveq2 |  |-  ( x = k -> ( A / x ) = ( A / k ) ) | 
						
							| 267 | 266 | fvoveq1d |  |-  ( x = k -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) | 
						
							| 268 |  | oveq2 |  |-  ( x = ( k + 1 ) -> ( A / x ) = ( A / ( k + 1 ) ) ) | 
						
							| 269 | 268 | fvoveq1d |  |-  ( x = ( k + 1 ) -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) | 
						
							| 270 |  | oveq2 |  |-  ( x = 1 -> ( A / x ) = ( A / 1 ) ) | 
						
							| 271 | 270 | fvoveq1d |  |-  ( x = 1 -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / 1 ) + 1 ) ) ) | 
						
							| 272 |  | oveq2 |  |-  ( x = ( n + 1 ) -> ( A / x ) = ( A / ( n + 1 ) ) ) | 
						
							| 273 | 272 | fvoveq1d |  |-  ( x = ( n + 1 ) -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) | 
						
							| 274 | 92 | nnzd |  |-  ( ( ph /\ n e. NN ) -> n e. ZZ ) | 
						
							| 275 | 96 3 | eleqtrdi |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 276 | 12 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> A e. CC ) | 
						
							| 277 |  | elfznn |  |-  ( x e. ( 1 ... ( n + 1 ) ) -> x e. NN ) | 
						
							| 278 | 277 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. NN ) | 
						
							| 279 | 278 | nncnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. CC ) | 
						
							| 280 | 278 | nnne0d |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x =/= 0 ) | 
						
							| 281 | 276 279 280 | divcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( A / x ) e. CC ) | 
						
							| 282 |  | 1cnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> 1 e. CC ) | 
						
							| 283 | 281 282 | addcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( ( A / x ) + 1 ) e. CC ) | 
						
							| 284 | 2 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 285 | 284 278 | dmgmdivn0 |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( ( A / x ) + 1 ) =/= 0 ) | 
						
							| 286 | 283 285 | logcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` ( ( A / x ) + 1 ) ) e. CC ) | 
						
							| 287 | 267 269 271 273 274 275 286 | telfsum |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) = ( ( log ` ( ( A / 1 ) + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 288 | 91 | div1d |  |-  ( ( ph /\ n e. NN ) -> ( A / 1 ) = A ) | 
						
							| 289 | 288 | fvoveq1d |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( A / 1 ) + 1 ) ) = ( log ` ( A + 1 ) ) ) | 
						
							| 290 | 289 | oveq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( log ` ( ( A / 1 ) + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 291 | 287 290 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 292 | 264 265 291 | 3eqtr3d |  |-  ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) | 
						
							| 293 | 292 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) ) | 
						
							| 294 | 213 293 | eqtr3d |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) ) | 
						
							| 295 | 171 | oveq2d |  |-  ( m = k -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) | 
						
							| 296 |  | oveq2 |  |-  ( m = k -> ( A / m ) = ( A / k ) ) | 
						
							| 297 | 296 | fvoveq1d |  |-  ( m = k -> ( log ` ( ( A / m ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) | 
						
							| 298 | 295 297 | oveq12d |  |-  ( m = k -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 299 |  | ovex |  |-  ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. _V | 
						
							| 300 | 298 1 299 | fvmpt |  |-  ( k e. NN -> ( G ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 301 | 167 300 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( G ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) | 
						
							| 302 | 301 179 211 | fsumser |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) = ( seq 1 ( + , G ) ` n ) ) | 
						
							| 303 | 160 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) = ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) | 
						
							| 304 | 198 303 | oveq12d |  |-  ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) - ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) ) | 
						
							| 305 | 294 302 304 | 3eqtr3d |  |-  ( ( ph /\ n e. NN ) -> ( seq 1 ( + , G ) ` n ) = ( ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) - ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) ) | 
						
							| 306 | 3 4 9 11 165 201 204 305 | climsub |  |-  ( ph -> seq 1 ( + , G ) ~~> ( ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) - ( log ` ( A + 1 ) ) ) ) | 
						
							| 307 |  | lgamcl |  |-  ( ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) e. CC ) | 
						
							| 308 | 8 307 | syl |  |-  ( ph -> ( log_G ` ( A + 1 ) ) e. CC ) | 
						
							| 309 | 308 143 | pncand |  |-  ( ph -> ( ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) - ( log ` ( A + 1 ) ) ) = ( log_G ` ( A + 1 ) ) ) | 
						
							| 310 | 306 309 | breqtrd |  |-  ( ph -> seq 1 ( + , G ) ~~> ( log_G ` ( A + 1 ) ) ) |