Step |
Hyp |
Ref |
Expression |
1 |
|
lgamcvg.g |
|- G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
2 |
|
lgamcvg.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
5 |
|
eqid |
|- ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
6
|
a1i |
|- ( ph -> 1 e. NN0 ) |
8 |
2 7
|
dmgmaddnn0 |
|- ( ph -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) |
9 |
5 8
|
lgamcvg |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) ) |
10 |
|
seqex |
|- seq 1 ( + , G ) e. _V |
11 |
10
|
a1i |
|- ( ph -> seq 1 ( + , G ) e. _V ) |
12 |
2
|
eldifad |
|- ( ph -> A e. CC ) |
13 |
12
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
14 |
|
arch |
|- ( ( abs ` A ) e. RR -> E. r e. NN ( abs ` A ) < r ) |
15 |
13 14
|
syl |
|- ( ph -> E. r e. NN ( abs ` A ) < r ) |
16 |
|
eqid |
|- ( ZZ>= ` r ) = ( ZZ>= ` r ) |
17 |
|
simprl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> r e. NN ) |
18 |
17
|
nnzd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> r e. ZZ ) |
19 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
20 |
19
|
logcn |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
21 |
20
|
a1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) |
22 |
|
eqid |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
23 |
22
|
dvlog2lem |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
24 |
12
|
ad2antrr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> A e. CC ) |
25 |
|
eluznn |
|- ( ( r e. NN /\ m e. ( ZZ>= ` r ) ) -> m e. NN ) |
26 |
25
|
ex |
|- ( r e. NN -> ( m e. ( ZZ>= ` r ) -> m e. NN ) ) |
27 |
26
|
ad2antrl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) -> m e. NN ) ) |
28 |
27
|
imp |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> m e. NN ) |
29 |
28
|
nncnd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> m e. CC ) |
30 |
|
1cnd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. CC ) |
31 |
29 30
|
addcld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. CC ) |
32 |
28
|
peano2nnd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. NN ) |
33 |
32
|
nnne0d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) =/= 0 ) |
34 |
24 31 33
|
divcld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( A / ( m + 1 ) ) e. CC ) |
35 |
34 30
|
addcld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. CC ) |
36 |
|
ax-1cn |
|- 1 e. CC |
37 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
38 |
37
|
cnmetdval |
|- ( ( ( ( A / ( m + 1 ) ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) ) |
39 |
35 36 38
|
sylancl |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) ) |
40 |
34 30
|
pncand |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) = ( A / ( m + 1 ) ) ) |
41 |
40
|
fveq2d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) = ( abs ` ( A / ( m + 1 ) ) ) ) |
42 |
24 31 33
|
absdivd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( A / ( m + 1 ) ) ) = ( ( abs ` A ) / ( abs ` ( m + 1 ) ) ) ) |
43 |
32
|
nnred |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. RR ) |
44 |
32
|
nnrpd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. RR+ ) |
45 |
44
|
rpge0d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 0 <_ ( m + 1 ) ) |
46 |
43 45
|
absidd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( m + 1 ) ) = ( m + 1 ) ) |
47 |
46
|
oveq2d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( abs ` A ) / ( abs ` ( m + 1 ) ) ) = ( ( abs ` A ) / ( m + 1 ) ) ) |
48 |
42 47
|
eqtrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( A / ( m + 1 ) ) ) = ( ( abs ` A ) / ( m + 1 ) ) ) |
49 |
39 41 48
|
3eqtrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( ( abs ` A ) / ( m + 1 ) ) ) |
50 |
13
|
ad2antrr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) e. RR ) |
51 |
17
|
adantr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r e. NN ) |
52 |
51
|
nnred |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r e. RR ) |
53 |
|
simplrr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < r ) |
54 |
|
eluzle |
|- ( m e. ( ZZ>= ` r ) -> r <_ m ) |
55 |
54
|
adantl |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r <_ m ) |
56 |
|
nnleltp1 |
|- ( ( r e. NN /\ m e. NN ) -> ( r <_ m <-> r < ( m + 1 ) ) ) |
57 |
51 28 56
|
syl2anc |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( r <_ m <-> r < ( m + 1 ) ) ) |
58 |
55 57
|
mpbid |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r < ( m + 1 ) ) |
59 |
50 52 43 53 58
|
lttrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < ( m + 1 ) ) |
60 |
31
|
mulid1d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( m + 1 ) x. 1 ) = ( m + 1 ) ) |
61 |
59 60
|
breqtrrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < ( ( m + 1 ) x. 1 ) ) |
62 |
|
1red |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. RR ) |
63 |
50 62 44
|
ltdivmuld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( abs ` A ) / ( m + 1 ) ) < 1 <-> ( abs ` A ) < ( ( m + 1 ) x. 1 ) ) ) |
64 |
61 63
|
mpbird |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( abs ` A ) / ( m + 1 ) ) < 1 ) |
65 |
49 64
|
eqbrtrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) |
66 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
67 |
66
|
a1i |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
68 |
|
1rp |
|- 1 e. RR+ |
69 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
70 |
68 69
|
mp1i |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. RR* ) |
71 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( ( A / ( m + 1 ) ) + 1 ) e. CC ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) ) |
72 |
67 70 30 35 71
|
syl22anc |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) ) |
73 |
65 72
|
mpbird |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
74 |
23 73
|
sselid |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
75 |
74
|
fmpttd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) : ( ZZ>= ` r ) --> ( CC \ ( -oo (,] 0 ) ) ) |
76 |
27
|
ssrdv |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ZZ>= ` r ) C_ NN ) |
77 |
76
|
resmptd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) = ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) |
78 |
|
nnex |
|- NN e. _V |
79 |
78
|
mptex |
|- ( m e. NN |-> ( A / ( m + 1 ) ) ) e. _V |
80 |
79
|
a1i |
|- ( ph -> ( m e. NN |-> ( A / ( m + 1 ) ) ) e. _V ) |
81 |
|
oveq1 |
|- ( m = n -> ( m + 1 ) = ( n + 1 ) ) |
82 |
81
|
oveq2d |
|- ( m = n -> ( A / ( m + 1 ) ) = ( A / ( n + 1 ) ) ) |
83 |
|
eqid |
|- ( m e. NN |-> ( A / ( m + 1 ) ) ) = ( m e. NN |-> ( A / ( m + 1 ) ) ) |
84 |
|
ovex |
|- ( A / ( n + 1 ) ) e. _V |
85 |
82 83 84
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) = ( A / ( n + 1 ) ) ) |
86 |
85
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) = ( A / ( n + 1 ) ) ) |
87 |
3 4 12 4 80 86
|
divcnvshft |
|- ( ph -> ( m e. NN |-> ( A / ( m + 1 ) ) ) ~~> 0 ) |
88 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
89 |
78
|
mptex |
|- ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V |
90 |
89
|
a1i |
|- ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V ) |
91 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. CC ) |
92 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
93 |
92
|
nncnd |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
94 |
|
1cnd |
|- ( ( ph /\ n e. NN ) -> 1 e. CC ) |
95 |
93 94
|
addcld |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. CC ) |
96 |
92
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
97 |
96
|
nnne0d |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) =/= 0 ) |
98 |
91 95 97
|
divcld |
|- ( ( ph /\ n e. NN ) -> ( A / ( n + 1 ) ) e. CC ) |
99 |
86 98
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) e. CC ) |
100 |
82
|
oveq1d |
|- ( m = n -> ( ( A / ( m + 1 ) ) + 1 ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
101 |
|
eqid |
|- ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) = ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |
102 |
|
ovex |
|- ( ( A / ( n + 1 ) ) + 1 ) e. _V |
103 |
100 101 102
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
104 |
103
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
105 |
86
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) + 1 ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
106 |
104 105
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) + 1 ) ) |
107 |
3 4 87 88 90 99 106
|
climaddc1 |
|- ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> ( 0 + 1 ) ) |
108 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
109 |
107 108
|
breqtrdi |
|- ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) |
110 |
109
|
adantr |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) |
111 |
|
climres |
|- ( ( r e. ZZ /\ ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V ) -> ( ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 <-> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) ) |
112 |
18 89 111
|
sylancl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 <-> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) ) |
113 |
110 112
|
mpbird |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 ) |
114 |
77 113
|
eqbrtrrd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) |
115 |
68
|
a1i |
|- ( 1 e. RR -> 1 e. RR+ ) |
116 |
19
|
ellogdm |
|- ( 1 e. ( CC \ ( -oo (,] 0 ) ) <-> ( 1 e. CC /\ ( 1 e. RR -> 1 e. RR+ ) ) ) |
117 |
36 115 116
|
mpbir2an |
|- 1 e. ( CC \ ( -oo (,] 0 ) ) |
118 |
117
|
a1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> 1 e. ( CC \ ( -oo (,] 0 ) ) ) |
119 |
16 18 21 75 114 118
|
climcncf |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) ) |
120 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
121 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
122 |
120 121
|
mp1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> log : ( CC \ { 0 } ) --> ran log ) |
123 |
19
|
logdmss |
|- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
124 |
123 74
|
sselid |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( CC \ { 0 } ) ) |
125 |
122 124
|
cofmpt |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( m e. ( ZZ>= ` r ) |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
126 |
|
frn |
|- ( ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) : ( ZZ>= ` r ) --> ( CC \ ( -oo (,] 0 ) ) -> ran ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) |
127 |
|
cores |
|- ( ran ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
128 |
75 126 127
|
3syl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
129 |
76
|
resmptd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) = ( m e. ( ZZ>= ` r ) |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
130 |
125 128 129
|
3eqtr4d |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ) |
131 |
|
fvres |
|- ( 1 e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = ( log ` 1 ) ) |
132 |
117 131
|
mp1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = ( log ` 1 ) ) |
133 |
|
log1 |
|- ( log ` 1 ) = 0 |
134 |
132 133
|
eqtrdi |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = 0 ) |
135 |
119 130 134
|
3brtr3d |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 ) |
136 |
78
|
mptex |
|- ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) e. _V |
137 |
|
climres |
|- ( ( r e. ZZ /\ ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) e. _V ) -> ( ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 <-> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) ) |
138 |
18 136 137
|
sylancl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 <-> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) ) |
139 |
135 138
|
mpbid |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) |
140 |
15 139
|
rexlimddv |
|- ( ph -> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) |
141 |
12 88
|
addcld |
|- ( ph -> ( A + 1 ) e. CC ) |
142 |
8
|
dmgmn0 |
|- ( ph -> ( A + 1 ) =/= 0 ) |
143 |
141 142
|
logcld |
|- ( ph -> ( log ` ( A + 1 ) ) e. CC ) |
144 |
78
|
mptex |
|- ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) e. _V |
145 |
144
|
a1i |
|- ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) e. _V ) |
146 |
82
|
fvoveq1d |
|- ( m = n -> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
147 |
|
eqid |
|- ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |
148 |
|
fvex |
|- ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) e. _V |
149 |
146 147 148
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
150 |
149
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
151 |
98 94
|
addcld |
|- ( ( ph /\ n e. NN ) -> ( ( A / ( n + 1 ) ) + 1 ) e. CC ) |
152 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
153 |
152 96
|
dmgmdivn0 |
|- ( ( ph /\ n e. NN ) -> ( ( A / ( n + 1 ) ) + 1 ) =/= 0 ) |
154 |
151 153
|
logcld |
|- ( ( ph /\ n e. NN ) -> ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) e. CC ) |
155 |
150 154
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) e. CC ) |
156 |
146
|
oveq2d |
|- ( m = n -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
157 |
|
eqid |
|- ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) = ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
158 |
|
ovex |
|- ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) e. _V |
159 |
156 157 158
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
160 |
159
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
161 |
150
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
162 |
160 161
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) ) ) |
163 |
3 4 140 143 145 155 162
|
climsubc2 |
|- ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ~~> ( ( log ` ( A + 1 ) ) - 0 ) ) |
164 |
143
|
subid1d |
|- ( ph -> ( ( log ` ( A + 1 ) ) - 0 ) = ( log ` ( A + 1 ) ) ) |
165 |
163 164
|
breqtrd |
|- ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ~~> ( log ` ( A + 1 ) ) ) |
166 |
|
elfznn |
|- ( k e. ( 1 ... n ) -> k e. NN ) |
167 |
166
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
168 |
|
oveq1 |
|- ( m = k -> ( m + 1 ) = ( k + 1 ) ) |
169 |
|
id |
|- ( m = k -> m = k ) |
170 |
168 169
|
oveq12d |
|- ( m = k -> ( ( m + 1 ) / m ) = ( ( k + 1 ) / k ) ) |
171 |
170
|
fveq2d |
|- ( m = k -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
172 |
171
|
oveq2d |
|- ( m = k -> ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) = ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
173 |
|
oveq2 |
|- ( m = k -> ( ( A + 1 ) / m ) = ( ( A + 1 ) / k ) ) |
174 |
173
|
fvoveq1d |
|- ( m = k -> ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) = ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) |
175 |
172 174
|
oveq12d |
|- ( m = k -> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) |
176 |
|
ovex |
|- ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. _V |
177 |
175 5 176
|
fvmpt |
|- ( k e. NN -> ( ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ` k ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) |
178 |
167 177
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ` k ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) |
179 |
92 3
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
180 |
12
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. CC ) |
181 |
|
1cnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> 1 e. CC ) |
182 |
180 181
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + 1 ) e. CC ) |
183 |
167
|
peano2nnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. NN ) |
184 |
183
|
nnrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. RR+ ) |
185 |
167
|
nnrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. RR+ ) |
186 |
184 185
|
rpdivcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k + 1 ) / k ) e. RR+ ) |
187 |
186
|
relogcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) e. RR ) |
188 |
187
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) e. CC ) |
189 |
182 188
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) |
190 |
167
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. CC ) |
191 |
167
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k =/= 0 ) |
192 |
182 190 191
|
divcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) / k ) e. CC ) |
193 |
192 181
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) e. CC ) |
194 |
8
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) |
195 |
194 167
|
dmgmdivn0 |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) =/= 0 ) |
196 |
193 195
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) e. CC ) |
197 |
189 196
|
subcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) |
198 |
178 179 197
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) = ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) ) |
199 |
|
fzfid |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
200 |
199 197
|
fsumcl |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) |
201 |
198 200
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) e. CC ) |
202 |
143
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( log ` ( A + 1 ) ) e. CC ) |
203 |
202 154
|
subcld |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) e. CC ) |
204 |
160 203
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) e. CC ) |
205 |
180 188
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) |
206 |
180 190 191
|
divcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A / k ) e. CC ) |
207 |
206 181
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / k ) + 1 ) e. CC ) |
208 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
209 |
208 167
|
dmgmdivn0 |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / k ) + 1 ) =/= 0 ) |
210 |
207 209
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / k ) + 1 ) ) e. CC ) |
211 |
205 210
|
subcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) |
212 |
199 211
|
fsumcl |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) |
213 |
200 212
|
nncand |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
214 |
189 196 205 210
|
sub4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
215 |
180 181
|
pncan2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) - A ) = 1 ) |
216 |
215
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) - A ) x. ( log ` ( ( k + 1 ) / k ) ) ) = ( 1 x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
217 |
182 180 188
|
subdird |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) - A ) x. ( log ` ( ( k + 1 ) / k ) ) ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) ) |
218 |
188
|
mulid2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 1 x. ( log ` ( ( k + 1 ) / k ) ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
219 |
216 217 218
|
3eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
220 |
219
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
221 |
188 196 210
|
subsubd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) + ( log ` ( ( A / k ) + 1 ) ) ) ) |
222 |
188 196
|
subcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) |
223 |
222 210
|
addcomd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) + ( log ` ( ( A / k ) + 1 ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) ) |
224 |
210 196 188
|
subsub2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) ) |
225 |
183
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. CC ) |
226 |
180 225
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + ( k + 1 ) ) e. CC ) |
227 |
183
|
nnnn0d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. NN0 ) |
228 |
|
dmgmaddn0 |
|- ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ ( k + 1 ) e. NN0 ) -> ( A + ( k + 1 ) ) =/= 0 ) |
229 |
208 227 228
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + ( k + 1 ) ) =/= 0 ) |
230 |
226 229
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( A + ( k + 1 ) ) ) e. CC ) |
231 |
184
|
relogcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( k + 1 ) ) e. RR ) |
232 |
231
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( k + 1 ) ) e. CC ) |
233 |
185
|
relogcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` k ) e. RR ) |
234 |
233
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` k ) e. CC ) |
235 |
230 232 234
|
nnncan2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) - ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
236 |
182 190 190 191
|
divdird |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) + k ) / k ) = ( ( ( A + 1 ) / k ) + ( k / k ) ) ) |
237 |
180 190 181
|
add32d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + k ) + 1 ) = ( ( A + 1 ) + k ) ) |
238 |
180 190 181
|
addassd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + k ) + 1 ) = ( A + ( k + 1 ) ) ) |
239 |
237 238
|
eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) + k ) = ( A + ( k + 1 ) ) ) |
240 |
239
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) + k ) / k ) = ( ( A + ( k + 1 ) ) / k ) ) |
241 |
190 191
|
dividd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k / k ) = 1 ) |
242 |
241
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + ( k / k ) ) = ( ( ( A + 1 ) / k ) + 1 ) ) |
243 |
236 240 242
|
3eqtr3rd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) = ( ( A + ( k + 1 ) ) / k ) ) |
244 |
243
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) = ( log ` ( ( A + ( k + 1 ) ) / k ) ) ) |
245 |
|
logdiv2 |
|- ( ( ( A + ( k + 1 ) ) e. CC /\ ( A + ( k + 1 ) ) =/= 0 /\ k e. RR+ ) -> ( log ` ( ( A + ( k + 1 ) ) / k ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) |
246 |
226 229 185 245
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A + ( k + 1 ) ) / k ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) |
247 |
244 246
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) |
248 |
184 185
|
relogdivd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) = ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) |
249 |
247 248
|
oveq12d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) = ( ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) - ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) ) |
250 |
183
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) =/= 0 ) |
251 |
180 225 225 250
|
divdird |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + ( k + 1 ) ) / ( k + 1 ) ) = ( ( A / ( k + 1 ) ) + ( ( k + 1 ) / ( k + 1 ) ) ) ) |
252 |
225 250
|
dividd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k + 1 ) / ( k + 1 ) ) = 1 ) |
253 |
252
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / ( k + 1 ) ) + ( ( k + 1 ) / ( k + 1 ) ) ) = ( ( A / ( k + 1 ) ) + 1 ) ) |
254 |
251 253
|
eqtr2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / ( k + 1 ) ) + 1 ) = ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) |
255 |
254
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) = ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) ) |
256 |
|
logdiv2 |
|- ( ( ( A + ( k + 1 ) ) e. CC /\ ( A + ( k + 1 ) ) =/= 0 /\ ( k + 1 ) e. RR+ ) -> ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
257 |
226 229 184 256
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
258 |
255 257
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
259 |
235 249 258
|
3eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) = ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) |
260 |
259
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
261 |
224 260
|
eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
262 |
221 223 261
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
263 |
214 220 262
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
264 |
263
|
sumeq2dv |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
265 |
199 197 211
|
fsumsub |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
266 |
|
oveq2 |
|- ( x = k -> ( A / x ) = ( A / k ) ) |
267 |
266
|
fvoveq1d |
|- ( x = k -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) |
268 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( A / x ) = ( A / ( k + 1 ) ) ) |
269 |
268
|
fvoveq1d |
|- ( x = ( k + 1 ) -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) |
270 |
|
oveq2 |
|- ( x = 1 -> ( A / x ) = ( A / 1 ) ) |
271 |
270
|
fvoveq1d |
|- ( x = 1 -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / 1 ) + 1 ) ) ) |
272 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( A / x ) = ( A / ( n + 1 ) ) ) |
273 |
272
|
fvoveq1d |
|- ( x = ( n + 1 ) -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
274 |
92
|
nnzd |
|- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
275 |
96 3
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) |
276 |
12
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> A e. CC ) |
277 |
|
elfznn |
|- ( x e. ( 1 ... ( n + 1 ) ) -> x e. NN ) |
278 |
277
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. NN ) |
279 |
278
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. CC ) |
280 |
278
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x =/= 0 ) |
281 |
276 279 280
|
divcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( A / x ) e. CC ) |
282 |
|
1cnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> 1 e. CC ) |
283 |
281 282
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( ( A / x ) + 1 ) e. CC ) |
284 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
285 |
284 278
|
dmgmdivn0 |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( ( A / x ) + 1 ) =/= 0 ) |
286 |
283 285
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` ( ( A / x ) + 1 ) ) e. CC ) |
287 |
267 269 271 273 274 275 286
|
telfsum |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) = ( ( log ` ( ( A / 1 ) + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
288 |
91
|
div1d |
|- ( ( ph /\ n e. NN ) -> ( A / 1 ) = A ) |
289 |
288
|
fvoveq1d |
|- ( ( ph /\ n e. NN ) -> ( log ` ( ( A / 1 ) + 1 ) ) = ( log ` ( A + 1 ) ) ) |
290 |
289
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( ( A / 1 ) + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
291 |
287 290
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
292 |
264 265 291
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
293 |
292
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) ) |
294 |
213 293
|
eqtr3d |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) ) |
295 |
171
|
oveq2d |
|- ( m = k -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
296 |
|
oveq2 |
|- ( m = k -> ( A / m ) = ( A / k ) ) |
297 |
296
|
fvoveq1d |
|- ( m = k -> ( log ` ( ( A / m ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) |
298 |
295 297
|
oveq12d |
|- ( m = k -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
299 |
|
ovex |
|- ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. _V |
300 |
298 1 299
|
fvmpt |
|- ( k e. NN -> ( G ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
301 |
167 300
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( G ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
302 |
301 179 211
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) = ( seq 1 ( + , G ) ` n ) ) |
303 |
160
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) = ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) |
304 |
198 303
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) - ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) ) |
305 |
294 302 304
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , G ) ` n ) = ( ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) - ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) ) |
306 |
3 4 9 11 165 201 204 305
|
climsub |
|- ( ph -> seq 1 ( + , G ) ~~> ( ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) - ( log ` ( A + 1 ) ) ) ) |
307 |
|
lgamcl |
|- ( ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) e. CC ) |
308 |
8 307
|
syl |
|- ( ph -> ( log_G ` ( A + 1 ) ) e. CC ) |
309 |
308 143
|
pncand |
|- ( ph -> ( ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) - ( log ` ( A + 1 ) ) ) = ( log_G ` ( A + 1 ) ) ) |
310 |
306 309
|
breqtrd |
|- ( ph -> seq 1 ( + , G ) ~~> ( log_G ` ( A + 1 ) ) ) |