| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamcvg.g |
|- G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
| 2 |
|
lgamcvg.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 4 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 5 |
|
eqid |
|- ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) |
| 6 |
|
1nn0 |
|- 1 e. NN0 |
| 7 |
6
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 8 |
2 7
|
dmgmaddnn0 |
|- ( ph -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) |
| 9 |
5 8
|
lgamcvg |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) ) |
| 10 |
|
seqex |
|- seq 1 ( + , G ) e. _V |
| 11 |
10
|
a1i |
|- ( ph -> seq 1 ( + , G ) e. _V ) |
| 12 |
2
|
eldifad |
|- ( ph -> A e. CC ) |
| 13 |
12
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
| 14 |
|
arch |
|- ( ( abs ` A ) e. RR -> E. r e. NN ( abs ` A ) < r ) |
| 15 |
13 14
|
syl |
|- ( ph -> E. r e. NN ( abs ` A ) < r ) |
| 16 |
|
eqid |
|- ( ZZ>= ` r ) = ( ZZ>= ` r ) |
| 17 |
|
simprl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> r e. NN ) |
| 18 |
17
|
nnzd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> r e. ZZ ) |
| 19 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 20 |
19
|
logcn |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
| 21 |
20
|
a1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) |
| 22 |
|
eqid |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
| 23 |
22
|
dvlog2lem |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
| 24 |
12
|
ad2antrr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> A e. CC ) |
| 25 |
|
eluznn |
|- ( ( r e. NN /\ m e. ( ZZ>= ` r ) ) -> m e. NN ) |
| 26 |
25
|
ex |
|- ( r e. NN -> ( m e. ( ZZ>= ` r ) -> m e. NN ) ) |
| 27 |
26
|
ad2antrl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) -> m e. NN ) ) |
| 28 |
27
|
imp |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> m e. NN ) |
| 29 |
28
|
nncnd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> m e. CC ) |
| 30 |
|
1cnd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. CC ) |
| 31 |
29 30
|
addcld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. CC ) |
| 32 |
28
|
peano2nnd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. NN ) |
| 33 |
32
|
nnne0d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) =/= 0 ) |
| 34 |
24 31 33
|
divcld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( A / ( m + 1 ) ) e. CC ) |
| 35 |
34 30
|
addcld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. CC ) |
| 36 |
|
ax-1cn |
|- 1 e. CC |
| 37 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 38 |
37
|
cnmetdval |
|- ( ( ( ( A / ( m + 1 ) ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) ) |
| 39 |
35 36 38
|
sylancl |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) ) |
| 40 |
34 30
|
pncand |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) = ( A / ( m + 1 ) ) ) |
| 41 |
40
|
fveq2d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( ( ( A / ( m + 1 ) ) + 1 ) - 1 ) ) = ( abs ` ( A / ( m + 1 ) ) ) ) |
| 42 |
24 31 33
|
absdivd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( A / ( m + 1 ) ) ) = ( ( abs ` A ) / ( abs ` ( m + 1 ) ) ) ) |
| 43 |
32
|
nnred |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. RR ) |
| 44 |
32
|
nnrpd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( m + 1 ) e. RR+ ) |
| 45 |
44
|
rpge0d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 0 <_ ( m + 1 ) ) |
| 46 |
43 45
|
absidd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( m + 1 ) ) = ( m + 1 ) ) |
| 47 |
46
|
oveq2d |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( abs ` A ) / ( abs ` ( m + 1 ) ) ) = ( ( abs ` A ) / ( m + 1 ) ) ) |
| 48 |
42 47
|
eqtrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` ( A / ( m + 1 ) ) ) = ( ( abs ` A ) / ( m + 1 ) ) ) |
| 49 |
39 41 48
|
3eqtrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) = ( ( abs ` A ) / ( m + 1 ) ) ) |
| 50 |
13
|
ad2antrr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) e. RR ) |
| 51 |
17
|
adantr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r e. NN ) |
| 52 |
51
|
nnred |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r e. RR ) |
| 53 |
|
simplrr |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < r ) |
| 54 |
|
eluzle |
|- ( m e. ( ZZ>= ` r ) -> r <_ m ) |
| 55 |
54
|
adantl |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r <_ m ) |
| 56 |
|
nnleltp1 |
|- ( ( r e. NN /\ m e. NN ) -> ( r <_ m <-> r < ( m + 1 ) ) ) |
| 57 |
51 28 56
|
syl2anc |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( r <_ m <-> r < ( m + 1 ) ) ) |
| 58 |
55 57
|
mpbid |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> r < ( m + 1 ) ) |
| 59 |
50 52 43 53 58
|
lttrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < ( m + 1 ) ) |
| 60 |
31
|
mulridd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( m + 1 ) x. 1 ) = ( m + 1 ) ) |
| 61 |
59 60
|
breqtrrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs ` A ) < ( ( m + 1 ) x. 1 ) ) |
| 62 |
|
1red |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. RR ) |
| 63 |
50 62 44
|
ltdivmuld |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( abs ` A ) / ( m + 1 ) ) < 1 <-> ( abs ` A ) < ( ( m + 1 ) x. 1 ) ) ) |
| 64 |
61 63
|
mpbird |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( abs ` A ) / ( m + 1 ) ) < 1 ) |
| 65 |
49 64
|
eqbrtrd |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) |
| 66 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 67 |
66
|
a1i |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 68 |
|
1rp |
|- 1 e. RR+ |
| 69 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
| 70 |
68 69
|
mp1i |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> 1 e. RR* ) |
| 71 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( ( A / ( m + 1 ) ) + 1 ) e. CC ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) ) |
| 72 |
67 70 30 35 71
|
syl22anc |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( ( A / ( m + 1 ) ) + 1 ) ( abs o. - ) 1 ) < 1 ) ) |
| 73 |
65 72
|
mpbird |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 74 |
23 73
|
sselid |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
| 75 |
74
|
fmpttd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) : ( ZZ>= ` r ) --> ( CC \ ( -oo (,] 0 ) ) ) |
| 76 |
27
|
ssrdv |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ZZ>= ` r ) C_ NN ) |
| 77 |
76
|
resmptd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) = ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) |
| 78 |
|
nnex |
|- NN e. _V |
| 79 |
78
|
mptex |
|- ( m e. NN |-> ( A / ( m + 1 ) ) ) e. _V |
| 80 |
79
|
a1i |
|- ( ph -> ( m e. NN |-> ( A / ( m + 1 ) ) ) e. _V ) |
| 81 |
|
oveq1 |
|- ( m = n -> ( m + 1 ) = ( n + 1 ) ) |
| 82 |
81
|
oveq2d |
|- ( m = n -> ( A / ( m + 1 ) ) = ( A / ( n + 1 ) ) ) |
| 83 |
|
eqid |
|- ( m e. NN |-> ( A / ( m + 1 ) ) ) = ( m e. NN |-> ( A / ( m + 1 ) ) ) |
| 84 |
|
ovex |
|- ( A / ( n + 1 ) ) e. _V |
| 85 |
82 83 84
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) = ( A / ( n + 1 ) ) ) |
| 86 |
85
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) = ( A / ( n + 1 ) ) ) |
| 87 |
3 4 12 4 80 86
|
divcnvshft |
|- ( ph -> ( m e. NN |-> ( A / ( m + 1 ) ) ) ~~> 0 ) |
| 88 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 89 |
78
|
mptex |
|- ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V |
| 90 |
89
|
a1i |
|- ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V ) |
| 91 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. CC ) |
| 92 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 93 |
92
|
nncnd |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 94 |
|
1cnd |
|- ( ( ph /\ n e. NN ) -> 1 e. CC ) |
| 95 |
93 94
|
addcld |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. CC ) |
| 96 |
92
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 97 |
96
|
nnne0d |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) =/= 0 ) |
| 98 |
91 95 97
|
divcld |
|- ( ( ph /\ n e. NN ) -> ( A / ( n + 1 ) ) e. CC ) |
| 99 |
86 98
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) e. CC ) |
| 100 |
82
|
oveq1d |
|- ( m = n -> ( ( A / ( m + 1 ) ) + 1 ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
| 101 |
|
eqid |
|- ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) = ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |
| 102 |
|
ovex |
|- ( ( A / ( n + 1 ) ) + 1 ) e. _V |
| 103 |
100 101 102
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
| 104 |
103
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
| 105 |
86
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) + 1 ) = ( ( A / ( n + 1 ) ) + 1 ) ) |
| 106 |
104 105
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ` n ) = ( ( ( m e. NN |-> ( A / ( m + 1 ) ) ) ` n ) + 1 ) ) |
| 107 |
3 4 87 88 90 99 106
|
climaddc1 |
|- ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> ( 0 + 1 ) ) |
| 108 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 109 |
107 108
|
breqtrdi |
|- ( ph -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) |
| 110 |
109
|
adantr |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) |
| 111 |
|
climres |
|- ( ( r e. ZZ /\ ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) e. _V ) -> ( ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 <-> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) ) |
| 112 |
18 89 111
|
sylancl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 <-> ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) ) |
| 113 |
110 112
|
mpbird |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( ( A / ( m + 1 ) ) + 1 ) ) |` ( ZZ>= ` r ) ) ~~> 1 ) |
| 114 |
77 113
|
eqbrtrrd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ~~> 1 ) |
| 115 |
68
|
a1i |
|- ( 1 e. RR -> 1 e. RR+ ) |
| 116 |
19
|
ellogdm |
|- ( 1 e. ( CC \ ( -oo (,] 0 ) ) <-> ( 1 e. CC /\ ( 1 e. RR -> 1 e. RR+ ) ) ) |
| 117 |
36 115 116
|
mpbir2an |
|- 1 e. ( CC \ ( -oo (,] 0 ) ) |
| 118 |
117
|
a1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> 1 e. ( CC \ ( -oo (,] 0 ) ) ) |
| 119 |
16 18 21 75 114 118
|
climcncf |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) ) |
| 120 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
| 121 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
| 122 |
120 121
|
mp1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> log : ( CC \ { 0 } ) --> ran log ) |
| 123 |
19
|
logdmss |
|- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
| 124 |
123 74
|
sselid |
|- ( ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) /\ m e. ( ZZ>= ` r ) ) -> ( ( A / ( m + 1 ) ) + 1 ) e. ( CC \ { 0 } ) ) |
| 125 |
122 124
|
cofmpt |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( m e. ( ZZ>= ` r ) |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
| 126 |
|
frn |
|- ( ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) : ( ZZ>= ` r ) --> ( CC \ ( -oo (,] 0 ) ) -> ran ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) |
| 127 |
|
cores |
|- ( ran ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
| 128 |
75 126 127
|
3syl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( log o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
| 129 |
76
|
resmptd |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) = ( m e. ( ZZ>= ` r ) |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
| 130 |
125 128 129
|
3eqtr4d |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) o. ( m e. ( ZZ>= ` r ) |-> ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ) |
| 131 |
|
fvres |
|- ( 1 e. ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = ( log ` 1 ) ) |
| 132 |
117 131
|
mp1i |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = ( log ` 1 ) ) |
| 133 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 134 |
132 133
|
eqtrdi |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) ` 1 ) = 0 ) |
| 135 |
119 130 134
|
3brtr3d |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 ) |
| 136 |
78
|
mptex |
|- ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) e. _V |
| 137 |
|
climres |
|- ( ( r e. ZZ /\ ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) e. _V ) -> ( ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 <-> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) ) |
| 138 |
18 136 137
|
sylancl |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |` ( ZZ>= ` r ) ) ~~> 0 <-> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) ) |
| 139 |
135 138
|
mpbid |
|- ( ( ph /\ ( r e. NN /\ ( abs ` A ) < r ) ) -> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) |
| 140 |
15 139
|
rexlimddv |
|- ( ph -> ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ~~> 0 ) |
| 141 |
12 88
|
addcld |
|- ( ph -> ( A + 1 ) e. CC ) |
| 142 |
8
|
dmgmn0 |
|- ( ph -> ( A + 1 ) =/= 0 ) |
| 143 |
141 142
|
logcld |
|- ( ph -> ( log ` ( A + 1 ) ) e. CC ) |
| 144 |
78
|
mptex |
|- ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) e. _V |
| 145 |
144
|
a1i |
|- ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) e. _V ) |
| 146 |
82
|
fvoveq1d |
|- ( m = n -> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
| 147 |
|
eqid |
|- ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) |
| 148 |
|
fvex |
|- ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) e. _V |
| 149 |
146 147 148
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
| 150 |
149
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
| 151 |
98 94
|
addcld |
|- ( ( ph /\ n e. NN ) -> ( ( A / ( n + 1 ) ) + 1 ) e. CC ) |
| 152 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 153 |
152 96
|
dmgmdivn0 |
|- ( ( ph /\ n e. NN ) -> ( ( A / ( n + 1 ) ) + 1 ) =/= 0 ) |
| 154 |
151 153
|
logcld |
|- ( ( ph /\ n e. NN ) -> ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) e. CC ) |
| 155 |
150 154
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) e. CC ) |
| 156 |
146
|
oveq2d |
|- ( m = n -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 157 |
|
eqid |
|- ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) = ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) |
| 158 |
|
ovex |
|- ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) e. _V |
| 159 |
156 157 158
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 160 |
159
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 161 |
150
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 162 |
160 161
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) = ( ( log ` ( A + 1 ) ) - ( ( m e. NN |-> ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ` n ) ) ) |
| 163 |
3 4 140 143 145 155 162
|
climsubc2 |
|- ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ~~> ( ( log ` ( A + 1 ) ) - 0 ) ) |
| 164 |
143
|
subid1d |
|- ( ph -> ( ( log ` ( A + 1 ) ) - 0 ) = ( log ` ( A + 1 ) ) ) |
| 165 |
163 164
|
breqtrd |
|- ( ph -> ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ~~> ( log ` ( A + 1 ) ) ) |
| 166 |
|
elfznn |
|- ( k e. ( 1 ... n ) -> k e. NN ) |
| 167 |
166
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 168 |
|
oveq1 |
|- ( m = k -> ( m + 1 ) = ( k + 1 ) ) |
| 169 |
|
id |
|- ( m = k -> m = k ) |
| 170 |
168 169
|
oveq12d |
|- ( m = k -> ( ( m + 1 ) / m ) = ( ( k + 1 ) / k ) ) |
| 171 |
170
|
fveq2d |
|- ( m = k -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
| 172 |
171
|
oveq2d |
|- ( m = k -> ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) = ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
| 173 |
|
oveq2 |
|- ( m = k -> ( ( A + 1 ) / m ) = ( ( A + 1 ) / k ) ) |
| 174 |
173
|
fvoveq1d |
|- ( m = k -> ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) = ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) |
| 175 |
172 174
|
oveq12d |
|- ( m = k -> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) |
| 176 |
|
ovex |
|- ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. _V |
| 177 |
175 5 176
|
fvmpt |
|- ( k e. NN -> ( ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ` k ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) |
| 178 |
167 177
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ` k ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) |
| 179 |
92 3
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 180 |
12
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. CC ) |
| 181 |
|
1cnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> 1 e. CC ) |
| 182 |
180 181
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + 1 ) e. CC ) |
| 183 |
167
|
peano2nnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. NN ) |
| 184 |
183
|
nnrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. RR+ ) |
| 185 |
167
|
nnrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. RR+ ) |
| 186 |
184 185
|
rpdivcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k + 1 ) / k ) e. RR+ ) |
| 187 |
186
|
relogcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) e. RR ) |
| 188 |
187
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) e. CC ) |
| 189 |
182 188
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) |
| 190 |
167
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. CC ) |
| 191 |
167
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k =/= 0 ) |
| 192 |
182 190 191
|
divcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) / k ) e. CC ) |
| 193 |
192 181
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) e. CC ) |
| 194 |
8
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) |
| 195 |
194 167
|
dmgmdivn0 |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) =/= 0 ) |
| 196 |
193 195
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) e. CC ) |
| 197 |
189 196
|
subcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) |
| 198 |
178 179 197
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) = ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) ) |
| 199 |
|
fzfid |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
| 200 |
199 197
|
fsumcl |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) |
| 201 |
198 200
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) e. CC ) |
| 202 |
143
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( log ` ( A + 1 ) ) e. CC ) |
| 203 |
202 154
|
subcld |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) e. CC ) |
| 204 |
160 203
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) e. CC ) |
| 205 |
180 188
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A x. ( log ` ( ( k + 1 ) / k ) ) ) e. CC ) |
| 206 |
180 190 191
|
divcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A / k ) e. CC ) |
| 207 |
206 181
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / k ) + 1 ) e. CC ) |
| 208 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 209 |
208 167
|
dmgmdivn0 |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / k ) + 1 ) =/= 0 ) |
| 210 |
207 209
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / k ) + 1 ) ) e. CC ) |
| 211 |
205 210
|
subcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) |
| 212 |
199 211
|
fsumcl |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. CC ) |
| 213 |
200 212
|
nncand |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
| 214 |
189 196 205 210
|
sub4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
| 215 |
180 181
|
pncan2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) - A ) = 1 ) |
| 216 |
215
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) - A ) x. ( log ` ( ( k + 1 ) / k ) ) ) = ( 1 x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
| 217 |
182 180 188
|
subdird |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) - A ) x. ( log ` ( ( k + 1 ) / k ) ) ) = ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) ) |
| 218 |
188
|
mullidd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 1 x. ( log ` ( ( k + 1 ) / k ) ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
| 219 |
216 217 218
|
3eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) = ( log ` ( ( k + 1 ) / k ) ) ) |
| 220 |
219
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
| 221 |
188 196 210
|
subsubd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) + ( log ` ( ( A / k ) + 1 ) ) ) ) |
| 222 |
188 196
|
subcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) e. CC ) |
| 223 |
222 210
|
addcomd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) + ( log ` ( ( A / k ) + 1 ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) ) |
| 224 |
210 196 188
|
subsub2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) ) |
| 225 |
183
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. CC ) |
| 226 |
180 225
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + ( k + 1 ) ) e. CC ) |
| 227 |
183
|
nnnn0d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) e. NN0 ) |
| 228 |
|
dmgmaddn0 |
|- ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ ( k + 1 ) e. NN0 ) -> ( A + ( k + 1 ) ) =/= 0 ) |
| 229 |
208 227 228
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( A + ( k + 1 ) ) =/= 0 ) |
| 230 |
226 229
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( A + ( k + 1 ) ) ) e. CC ) |
| 231 |
184
|
relogcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( k + 1 ) ) e. RR ) |
| 232 |
231
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( k + 1 ) ) e. CC ) |
| 233 |
185
|
relogcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` k ) e. RR ) |
| 234 |
233
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` k ) e. CC ) |
| 235 |
230 232 234
|
nnncan2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) - ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
| 236 |
182 190 190 191
|
divdird |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) + k ) / k ) = ( ( ( A + 1 ) / k ) + ( k / k ) ) ) |
| 237 |
180 190 181
|
add32d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + k ) + 1 ) = ( ( A + 1 ) + k ) ) |
| 238 |
180 190 181
|
addassd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + k ) + 1 ) = ( A + ( k + 1 ) ) ) |
| 239 |
237 238
|
eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + 1 ) + k ) = ( A + ( k + 1 ) ) ) |
| 240 |
239
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) + k ) / k ) = ( ( A + ( k + 1 ) ) / k ) ) |
| 241 |
190 191
|
dividd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k / k ) = 1 ) |
| 242 |
241
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + ( k / k ) ) = ( ( ( A + 1 ) / k ) + 1 ) ) |
| 243 |
236 240 242
|
3eqtr3rd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A + 1 ) / k ) + 1 ) = ( ( A + ( k + 1 ) ) / k ) ) |
| 244 |
243
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) = ( log ` ( ( A + ( k + 1 ) ) / k ) ) ) |
| 245 |
|
logdiv2 |
|- ( ( ( A + ( k + 1 ) ) e. CC /\ ( A + ( k + 1 ) ) =/= 0 /\ k e. RR+ ) -> ( log ` ( ( A + ( k + 1 ) ) / k ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) |
| 246 |
226 229 185 245
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A + ( k + 1 ) ) / k ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) |
| 247 |
244 246
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) ) |
| 248 |
184 185
|
relogdivd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( k + 1 ) / k ) ) = ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) |
| 249 |
247 248
|
oveq12d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) = ( ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` k ) ) - ( ( log ` ( k + 1 ) ) - ( log ` k ) ) ) ) |
| 250 |
183
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + 1 ) =/= 0 ) |
| 251 |
180 225 225 250
|
divdird |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A + ( k + 1 ) ) / ( k + 1 ) ) = ( ( A / ( k + 1 ) ) + ( ( k + 1 ) / ( k + 1 ) ) ) ) |
| 252 |
225 250
|
dividd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k + 1 ) / ( k + 1 ) ) = 1 ) |
| 253 |
252
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / ( k + 1 ) ) + ( ( k + 1 ) / ( k + 1 ) ) ) = ( ( A / ( k + 1 ) ) + 1 ) ) |
| 254 |
251 253
|
eqtr2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( A / ( k + 1 ) ) + 1 ) = ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) |
| 255 |
254
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) = ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) ) |
| 256 |
|
logdiv2 |
|- ( ( ( A + ( k + 1 ) ) e. CC /\ ( A + ( k + 1 ) ) =/= 0 /\ ( k + 1 ) e. RR+ ) -> ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
| 257 |
226 229 184 256
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A + ( k + 1 ) ) / ( k + 1 ) ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
| 258 |
255 257
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) = ( ( log ` ( A + ( k + 1 ) ) ) - ( log ` ( k + 1 ) ) ) ) |
| 259 |
235 249 258
|
3eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) = ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) |
| 260 |
259
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( k + 1 ) / k ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
| 261 |
224 260
|
eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( A / k ) + 1 ) ) + ( ( log ` ( ( k + 1 ) / k ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
| 262 |
221 223 261
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( log ` ( ( k + 1 ) / k ) ) - ( ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
| 263 |
214 220 262
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
| 264 |
263
|
sumeq2dv |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) ) |
| 265 |
199 197 211
|
fsumsub |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) |
| 266 |
|
oveq2 |
|- ( x = k -> ( A / x ) = ( A / k ) ) |
| 267 |
266
|
fvoveq1d |
|- ( x = k -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) |
| 268 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( A / x ) = ( A / ( k + 1 ) ) ) |
| 269 |
268
|
fvoveq1d |
|- ( x = ( k + 1 ) -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) |
| 270 |
|
oveq2 |
|- ( x = 1 -> ( A / x ) = ( A / 1 ) ) |
| 271 |
270
|
fvoveq1d |
|- ( x = 1 -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / 1 ) + 1 ) ) ) |
| 272 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( A / x ) = ( A / ( n + 1 ) ) ) |
| 273 |
272
|
fvoveq1d |
|- ( x = ( n + 1 ) -> ( log ` ( ( A / x ) + 1 ) ) = ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) |
| 274 |
92
|
nnzd |
|- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
| 275 |
96 3
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) |
| 276 |
12
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> A e. CC ) |
| 277 |
|
elfznn |
|- ( x e. ( 1 ... ( n + 1 ) ) -> x e. NN ) |
| 278 |
277
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. NN ) |
| 279 |
278
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. CC ) |
| 280 |
278
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> x =/= 0 ) |
| 281 |
276 279 280
|
divcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( A / x ) e. CC ) |
| 282 |
|
1cnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> 1 e. CC ) |
| 283 |
281 282
|
addcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( ( A / x ) + 1 ) e. CC ) |
| 284 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 285 |
284 278
|
dmgmdivn0 |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( ( A / x ) + 1 ) =/= 0 ) |
| 286 |
283 285
|
logcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` ( ( A / x ) + 1 ) ) e. CC ) |
| 287 |
267 269 271 273 274 275 286
|
telfsum |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) = ( ( log ` ( ( A / 1 ) + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 288 |
91
|
div1d |
|- ( ( ph /\ n e. NN ) -> ( A / 1 ) = A ) |
| 289 |
288
|
fvoveq1d |
|- ( ( ph /\ n e. NN ) -> ( log ` ( ( A / 1 ) + 1 ) ) = ( log ` ( A + 1 ) ) ) |
| 290 |
289
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( ( A / 1 ) + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 291 |
287 290
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( log ` ( ( A / k ) + 1 ) ) - ( log ` ( ( A / ( k + 1 ) ) + 1 ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 292 |
264 265 291
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) |
| 293 |
292
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) ) |
| 294 |
213 293
|
eqtr3d |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) = ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) ) |
| 295 |
171
|
oveq2d |
|- ( m = k -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) = ( A x. ( log ` ( ( k + 1 ) / k ) ) ) ) |
| 296 |
|
oveq2 |
|- ( m = k -> ( A / m ) = ( A / k ) ) |
| 297 |
296
|
fvoveq1d |
|- ( m = k -> ( log ` ( ( A / m ) + 1 ) ) = ( log ` ( ( A / k ) + 1 ) ) ) |
| 298 |
295 297
|
oveq12d |
|- ( m = k -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
| 299 |
|
ovex |
|- ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) e. _V |
| 300 |
298 1 299
|
fvmpt |
|- ( k e. NN -> ( G ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
| 301 |
167 300
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( G ` k ) = ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) ) |
| 302 |
301 179 211
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( A x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( A / k ) + 1 ) ) ) = ( seq 1 ( + , G ) ` n ) ) |
| 303 |
160
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) = ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) |
| 304 |
198 303
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( sum_ k e. ( 1 ... n ) ( ( ( A + 1 ) x. ( log ` ( ( k + 1 ) / k ) ) ) - ( log ` ( ( ( A + 1 ) / k ) + 1 ) ) ) - ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( n + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) - ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) ) |
| 305 |
294 302 304
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , G ) ` n ) = ( ( seq 1 ( + , ( m e. NN |-> ( ( ( A + 1 ) x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( ( A + 1 ) / m ) + 1 ) ) ) ) ) ` n ) - ( ( m e. NN |-> ( ( log ` ( A + 1 ) ) - ( log ` ( ( A / ( m + 1 ) ) + 1 ) ) ) ) ` n ) ) ) |
| 306 |
3 4 9 11 165 201 204 305
|
climsub |
|- ( ph -> seq 1 ( + , G ) ~~> ( ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) - ( log ` ( A + 1 ) ) ) ) |
| 307 |
|
lgamcl |
|- ( ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) e. CC ) |
| 308 |
8 307
|
syl |
|- ( ph -> ( log_G ` ( A + 1 ) ) e. CC ) |
| 309 |
308 143
|
pncand |
|- ( ph -> ( ( ( log_G ` ( A + 1 ) ) + ( log ` ( A + 1 ) ) ) - ( log ` ( A + 1 ) ) ) = ( log_G ` ( A + 1 ) ) ) |
| 310 |
306 309
|
breqtrd |
|- ( ph -> seq 1 ( + , G ) ~~> ( log_G ` ( A + 1 ) ) ) |