| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamcvg.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
| 2 |
|
lgamcvg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 4 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 5 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) |
| 6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 8 |
2 7
|
dmgmaddnn0 |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 9 |
5 8
|
lgamcvg |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ⇝ ( ( log Γ ‘ ( 𝐴 + 1 ) ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |
| 10 |
|
seqex |
⊢ seq 1 ( + , 𝐺 ) ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ∈ V ) |
| 12 |
2
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 |
12
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 14 |
|
arch |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ∃ 𝑟 ∈ ℕ ( abs ‘ 𝐴 ) < 𝑟 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℕ ( abs ‘ 𝐴 ) < 𝑟 ) |
| 16 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑟 ) = ( ℤ≥ ‘ 𝑟 ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → 𝑟 ∈ ℕ ) |
| 18 |
17
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → 𝑟 ∈ ℤ ) |
| 19 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 20 |
19
|
logcn |
⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) ) |
| 22 |
|
eqid |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 23 |
22
|
dvlog2lem |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 24 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝐴 ∈ ℂ ) |
| 25 |
|
eluznn |
⊢ ( ( 𝑟 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑚 ∈ ℕ ) |
| 26 |
25
|
ex |
⊢ ( 𝑟 ∈ ℕ → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) → 𝑚 ∈ ℕ ) ) |
| 27 |
26
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) → 𝑚 ∈ ℕ ) ) |
| 28 |
27
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑚 ∈ ℕ ) |
| 29 |
28
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑚 ∈ ℂ ) |
| 30 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 1 ∈ ℂ ) |
| 31 |
29 30
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℂ ) |
| 32 |
28
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 33 |
32
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ≠ 0 ) |
| 34 |
24 31 33
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝐴 / ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 35 |
34 30
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ℂ ) |
| 36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 37 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 38 |
37
|
cnmetdval |
⊢ ( ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) = ( abs ‘ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) ) ) |
| 39 |
35 36 38
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) = ( abs ‘ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) ) ) |
| 40 |
34 30
|
pncand |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) = ( 𝐴 / ( 𝑚 + 1 ) ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) ) = ( abs ‘ ( 𝐴 / ( 𝑚 + 1 ) ) ) ) |
| 42 |
24 31 33
|
absdivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( 𝐴 / ( 𝑚 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ ( 𝑚 + 1 ) ) ) ) |
| 43 |
32
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℝ ) |
| 44 |
32
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
| 45 |
44
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 0 ≤ ( 𝑚 + 1 ) ) |
| 46 |
43 45
|
absidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) |
| 47 |
46
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ ( 𝑚 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) ) |
| 48 |
42 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( 𝐴 / ( 𝑚 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) ) |
| 49 |
39 41 48
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) = ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) ) |
| 50 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 51 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 ∈ ℕ ) |
| 52 |
51
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 ∈ ℝ ) |
| 53 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) < 𝑟 ) |
| 54 |
|
eluzle |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) → 𝑟 ≤ 𝑚 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 ≤ 𝑚 ) |
| 56 |
|
nnleltp1 |
⊢ ( ( 𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑟 ≤ 𝑚 ↔ 𝑟 < ( 𝑚 + 1 ) ) ) |
| 57 |
51 28 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑟 ≤ 𝑚 ↔ 𝑟 < ( 𝑚 + 1 ) ) ) |
| 58 |
55 57
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 < ( 𝑚 + 1 ) ) |
| 59 |
50 52 43 53 58
|
lttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) < ( 𝑚 + 1 ) ) |
| 60 |
31
|
mulridd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝑚 + 1 ) · 1 ) = ( 𝑚 + 1 ) ) |
| 61 |
59 60
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) < ( ( 𝑚 + 1 ) · 1 ) ) |
| 62 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 1 ∈ ℝ ) |
| 63 |
50 62 44
|
ltdivmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) < 1 ↔ ( abs ‘ 𝐴 ) < ( ( 𝑚 + 1 ) · 1 ) ) ) |
| 64 |
61 63
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) < 1 ) |
| 65 |
49 64
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) < 1 ) |
| 66 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 67 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 68 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 69 |
|
rpxr |
⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) |
| 70 |
68 69
|
mp1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 1 ∈ ℝ* ) |
| 71 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 1 ∈ ℂ ∧ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ℂ ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) < 1 ) ) |
| 72 |
67 70 30 35 71
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) < 1 ) ) |
| 73 |
65 72
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 74 |
23 73
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 75 |
74
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) : ( ℤ≥ ‘ 𝑟 ) ⟶ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 76 |
27
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ℤ≥ ‘ 𝑟 ) ⊆ ℕ ) |
| 77 |
76
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) |
| 78 |
|
nnex |
⊢ ℕ ∈ V |
| 79 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ∈ V |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ∈ V ) |
| 81 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
| 82 |
81
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 / ( 𝑚 + 1 ) ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) |
| 84 |
|
ovex |
⊢ ( 𝐴 / ( 𝑛 + 1 ) ) ∈ V |
| 85 |
82 83 84
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
| 86 |
85
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
| 87 |
3 4 12 4 80 86
|
divcnvshft |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ⇝ 0 ) |
| 88 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 89 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ∈ V |
| 90 |
89
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ∈ V ) |
| 91 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 92 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 93 |
92
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 94 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
| 95 |
93 94
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℂ ) |
| 96 |
92
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 97 |
96
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ≠ 0 ) |
| 98 |
91 95 97
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 99 |
86 98
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 100 |
82
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
| 101 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) |
| 102 |
|
ovex |
⊢ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ∈ V |
| 103 |
100 101 102
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ‘ 𝑛 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
| 104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ‘ 𝑛 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
| 105 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) + 1 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
| 106 |
104 105
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ‘ 𝑛 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) + 1 ) ) |
| 107 |
3 4 87 88 90 99 106
|
climaddc1 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ ( 0 + 1 ) ) |
| 108 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 109 |
107 108
|
breqtrdi |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) |
| 111 |
|
climres |
⊢ ( ( 𝑟 ∈ ℤ ∧ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 1 ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) ) |
| 112 |
18 89 111
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 1 ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) ) |
| 113 |
110 112
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 1 ) |
| 114 |
77 113
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) |
| 115 |
68
|
a1i |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ+ ) |
| 116 |
19
|
ellogdm |
⊢ ( 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 1 ∈ ℂ ∧ ( 1 ∈ ℝ → 1 ∈ ℝ+ ) ) ) |
| 117 |
36 115 116
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 119 |
16 18 21 75 114 118
|
climcncf |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) ) |
| 120 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 121 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
| 122 |
120 121
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
| 123 |
19
|
logdmss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 124 |
123 74
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 125 |
122 124
|
cofmpt |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( log ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
| 126 |
|
frn |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) : ( ℤ≥ ‘ 𝑟 ) ⟶ ( ℂ ∖ ( -∞ (,] 0 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 127 |
|
cores |
⊢ ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( log ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
| 128 |
75 126 127
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( log ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
| 129 |
76
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
| 130 |
125 128 129
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ) |
| 131 |
|
fvres |
⊢ ( 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) = ( log ‘ 1 ) ) |
| 132 |
117 131
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) = ( log ‘ 1 ) ) |
| 133 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 134 |
132 133
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) = 0 ) |
| 135 |
119 130 134
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 0 ) |
| 136 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ∈ V |
| 137 |
|
climres |
⊢ ( ( 𝑟 ∈ ℤ ∧ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) ) |
| 138 |
18 136 137
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) ) |
| 139 |
135 138
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) |
| 140 |
15 139
|
rexlimddv |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) |
| 141 |
12 88
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℂ ) |
| 142 |
8
|
dmgmn0 |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ≠ 0 ) |
| 143 |
141 142
|
logcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 144 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ∈ V |
| 145 |
144
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ∈ V ) |
| 146 |
82
|
fvoveq1d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
| 147 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) |
| 148 |
|
fvex |
⊢ ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ∈ V |
| 149 |
146 147 148
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
| 151 |
98 94
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ∈ ℂ ) |
| 152 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 153 |
152 96
|
dmgmdivn0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ≠ 0 ) |
| 154 |
151 153
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ∈ ℂ ) |
| 155 |
150 154
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 156 |
146
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 157 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
| 158 |
|
ovex |
⊢ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ∈ V |
| 159 |
156 157 158
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 161 |
150
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( 𝐴 + 1 ) ) − ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 162 |
160 161
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) ) ) |
| 163 |
3 4 140 143 145 155 162
|
climsubc2 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ⇝ ( ( log ‘ ( 𝐴 + 1 ) ) − 0 ) ) |
| 164 |
143
|
subid1d |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐴 + 1 ) ) − 0 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 165 |
163 164
|
breqtrd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ⇝ ( log ‘ ( 𝐴 + 1 ) ) ) |
| 166 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
| 167 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 168 |
|
oveq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 + 1 ) = ( 𝑘 + 1 ) ) |
| 169 |
|
id |
⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) |
| 170 |
168 169
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑘 + 1 ) / 𝑘 ) ) |
| 171 |
170
|
fveq2d |
⊢ ( 𝑚 = 𝑘 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) |
| 172 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) |
| 173 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 + 1 ) / 𝑚 ) = ( ( 𝐴 + 1 ) / 𝑘 ) ) |
| 174 |
173
|
fvoveq1d |
⊢ ( 𝑚 = 𝑘 → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) = ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) |
| 175 |
172 174
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) |
| 176 |
|
ovex |
⊢ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ V |
| 177 |
175 5 176
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) |
| 178 |
167 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) |
| 179 |
92 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 180 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
| 181 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 1 ∈ ℂ ) |
| 182 |
180 181
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + 1 ) ∈ ℂ ) |
| 183 |
167
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 184 |
183
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
| 185 |
167
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℝ+ ) |
| 186 |
184 185
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 + 1 ) / 𝑘 ) ∈ ℝ+ ) |
| 187 |
186
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ∈ ℝ ) |
| 188 |
187
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ∈ ℂ ) |
| 189 |
182 188
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ∈ ℂ ) |
| 190 |
167
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℂ ) |
| 191 |
167
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ≠ 0 ) |
| 192 |
182 190 191
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) / 𝑘 ) ∈ ℂ ) |
| 193 |
192 181
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ∈ ℂ ) |
| 194 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 195 |
194 167
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ≠ 0 ) |
| 196 |
193 195
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 197 |
189 196
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 198 |
178 179 197
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
| 199 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
| 200 |
199 197
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 201 |
198 200
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 202 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 203 |
202 154
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ∈ ℂ ) |
| 204 |
160 203
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 205 |
180 188
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ∈ ℂ ) |
| 206 |
180 190 191
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 / 𝑘 ) ∈ ℂ ) |
| 207 |
206 181
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / 𝑘 ) + 1 ) ∈ ℂ ) |
| 208 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 209 |
208 167
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / 𝑘 ) + 1 ) ≠ 0 ) |
| 210 |
207 209
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 211 |
205 210
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 212 |
199 211
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 213 |
200 212
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
| 214 |
189 196 205 210
|
sub4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) |
| 215 |
180 181
|
pncan2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) − 𝐴 ) = 1 ) |
| 216 |
215
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( 1 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) |
| 217 |
182 180 188
|
subdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) ) |
| 218 |
188
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) |
| 219 |
216 217 218
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) = ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) |
| 220 |
219
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) |
| 221 |
188 196 210
|
subsubd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) + ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
| 222 |
188 196
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 223 |
222 210
|
addcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) + ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) + ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) ) |
| 224 |
210 196 188
|
subsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) + ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) ) |
| 225 |
183
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 226 |
180 225
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 227 |
183
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 228 |
|
dmgmaddn0 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ) |
| 229 |
208 227 228
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ) |
| 230 |
226 229
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 231 |
184
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 232 |
231
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 233 |
185
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 234 |
233
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
| 235 |
230 232 234
|
nnncan2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) − ( ( log ‘ ( 𝑘 + 1 ) ) − ( log ‘ 𝑘 ) ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 236 |
182 190 190 191
|
divdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) + 𝑘 ) / 𝑘 ) = ( ( ( 𝐴 + 1 ) / 𝑘 ) + ( 𝑘 / 𝑘 ) ) ) |
| 237 |
180 190 181
|
add32d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 𝑘 ) + 1 ) = ( ( 𝐴 + 1 ) + 𝑘 ) ) |
| 238 |
180 190 181
|
addassd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 𝑘 ) + 1 ) = ( 𝐴 + ( 𝑘 + 1 ) ) ) |
| 239 |
237 238
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) + 𝑘 ) = ( 𝐴 + ( 𝑘 + 1 ) ) ) |
| 240 |
239
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) + 𝑘 ) / 𝑘 ) = ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) |
| 241 |
190 191
|
dividd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 / 𝑘 ) = 1 ) |
| 242 |
241
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + ( 𝑘 / 𝑘 ) ) = ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) |
| 243 |
236 240 242
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) = ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) |
| 244 |
243
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) = ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) ) |
| 245 |
|
logdiv2 |
⊢ ( ( ( 𝐴 + ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ∧ 𝑘 ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) ) |
| 246 |
226 229 185 245
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) ) |
| 247 |
244 246
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) ) |
| 248 |
184 185
|
relogdivd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) = ( ( log ‘ ( 𝑘 + 1 ) ) − ( log ‘ 𝑘 ) ) ) |
| 249 |
247 248
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) − ( ( log ‘ ( 𝑘 + 1 ) ) − ( log ‘ 𝑘 ) ) ) ) |
| 250 |
183
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ≠ 0 ) |
| 251 |
180 225 225 250
|
divdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) = ( ( 𝐴 / ( 𝑘 + 1 ) ) + ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
| 252 |
225 250
|
dividd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) = 1 ) |
| 253 |
252
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / ( 𝑘 + 1 ) ) + ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) |
| 254 |
251 253
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) = ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) |
| 255 |
254
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) = ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) ) |
| 256 |
|
logdiv2 |
⊢ ( ( ( 𝐴 + ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝑘 + 1 ) ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 257 |
226 229 184 256
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 258 |
255 257
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 259 |
235 249 258
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) |
| 260 |
259
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
| 261 |
224 260
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) + ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
| 262 |
221 223 261
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
| 263 |
214 220 262
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
| 264 |
263
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
| 265 |
199 197 211
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) |
| 266 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑘 ) ) |
| 267 |
266
|
fvoveq1d |
⊢ ( 𝑥 = 𝑘 → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) |
| 268 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 / 𝑥 ) = ( 𝐴 / ( 𝑘 + 1 ) ) ) |
| 269 |
268
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) |
| 270 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 1 ) ) |
| 271 |
270
|
fvoveq1d |
⊢ ( 𝑥 = 1 → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) ) |
| 272 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐴 / 𝑥 ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
| 273 |
272
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
| 274 |
92
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 275 |
96 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 276 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 277 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) → 𝑥 ∈ ℕ ) |
| 278 |
277
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℕ ) |
| 279 |
278
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℂ ) |
| 280 |
278
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ≠ 0 ) |
| 281 |
276 279 280
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
| 282 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 1 ∈ ℂ ) |
| 283 |
281 282
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( ( 𝐴 / 𝑥 ) + 1 ) ∈ ℂ ) |
| 284 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 285 |
284 278
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( ( 𝐴 / 𝑥 ) + 1 ) ≠ 0 ) |
| 286 |
283 285
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) ∈ ℂ ) |
| 287 |
267 269 271 273 274 275 286
|
telfsum |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 288 |
91
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / 1 ) = 𝐴 ) |
| 289 |
288
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 290 |
289
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 291 |
287 290
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 292 |
264 265 291
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
| 293 |
292
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) ) |
| 294 |
213 293
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) ) |
| 295 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) |
| 296 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑘 ) ) |
| 297 |
296
|
fvoveq1d |
⊢ ( 𝑚 = 𝑘 → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) |
| 298 |
295 297
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) = ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
| 299 |
|
ovex |
⊢ ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ∈ V |
| 300 |
298 1 299
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
| 301 |
167 300
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
| 302 |
301 179 211
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) |
| 303 |
160
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) = ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ) |
| 304 |
198 303
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) − ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ) ) |
| 305 |
294 302 304
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) = ( ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) − ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ) ) |
| 306 |
3 4 9 11 165 201 204 305
|
climsub |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( ( log Γ ‘ ( 𝐴 + 1 ) ) + ( log ‘ ( 𝐴 + 1 ) ) ) − ( log ‘ ( 𝐴 + 1 ) ) ) ) |
| 307 |
|
lgamcl |
⊢ ( ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 308 |
8 307
|
syl |
⊢ ( 𝜑 → ( log Γ ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 309 |
308 143
|
pncand |
⊢ ( 𝜑 → ( ( ( log Γ ‘ ( 𝐴 + 1 ) ) + ( log ‘ ( 𝐴 + 1 ) ) ) − ( log ‘ ( 𝐴 + 1 ) ) ) = ( log Γ ‘ ( 𝐴 + 1 ) ) ) |
| 310 |
306 309
|
breqtrd |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( log Γ ‘ ( 𝐴 + 1 ) ) ) |