Step |
Hyp |
Ref |
Expression |
1 |
|
lgamcvg.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
2 |
|
lgamcvg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
5 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) |
6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
7 |
6
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
8 |
2 7
|
dmgmaddnn0 |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
9 |
5 8
|
lgamcvg |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ⇝ ( ( log Γ ‘ ( 𝐴 + 1 ) ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |
10 |
|
seqex |
⊢ seq 1 ( + , 𝐺 ) ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ∈ V ) |
12 |
2
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
13 |
12
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
14 |
|
arch |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ∃ 𝑟 ∈ ℕ ( abs ‘ 𝐴 ) < 𝑟 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℕ ( abs ‘ 𝐴 ) < 𝑟 ) |
16 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑟 ) = ( ℤ≥ ‘ 𝑟 ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → 𝑟 ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → 𝑟 ∈ ℤ ) |
19 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
20 |
19
|
logcn |
⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) ) |
22 |
|
eqid |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
23 |
22
|
dvlog2lem |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
24 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝐴 ∈ ℂ ) |
25 |
|
eluznn |
⊢ ( ( 𝑟 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑚 ∈ ℕ ) |
26 |
25
|
ex |
⊢ ( 𝑟 ∈ ℕ → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) → 𝑚 ∈ ℕ ) ) |
27 |
26
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) → 𝑚 ∈ ℕ ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑚 ∈ ℕ ) |
29 |
28
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑚 ∈ ℂ ) |
30 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 1 ∈ ℂ ) |
31 |
29 30
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℂ ) |
32 |
28
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
33 |
32
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ≠ 0 ) |
34 |
24 31 33
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝐴 / ( 𝑚 + 1 ) ) ∈ ℂ ) |
35 |
34 30
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ℂ ) |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
38 |
37
|
cnmetdval |
⊢ ( ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) = ( abs ‘ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) ) ) |
39 |
35 36 38
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) = ( abs ‘ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) ) ) |
40 |
34 30
|
pncand |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) = ( 𝐴 / ( 𝑚 + 1 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) − 1 ) ) = ( abs ‘ ( 𝐴 / ( 𝑚 + 1 ) ) ) ) |
42 |
24 31 33
|
absdivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( 𝐴 / ( 𝑚 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ ( 𝑚 + 1 ) ) ) ) |
43 |
32
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℝ ) |
44 |
32
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
45 |
44
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 0 ≤ ( 𝑚 + 1 ) ) |
46 |
43 45
|
absidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) |
47 |
46
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ ( 𝑚 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) ) |
48 |
42 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ ( 𝐴 / ( 𝑚 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) ) |
49 |
39 41 48
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) = ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) ) |
50 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
51 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 ∈ ℕ ) |
52 |
51
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 ∈ ℝ ) |
53 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) < 𝑟 ) |
54 |
|
eluzle |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) → 𝑟 ≤ 𝑚 ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 ≤ 𝑚 ) |
56 |
|
nnleltp1 |
⊢ ( ( 𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑟 ≤ 𝑚 ↔ 𝑟 < ( 𝑚 + 1 ) ) ) |
57 |
51 28 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( 𝑟 ≤ 𝑚 ↔ 𝑟 < ( 𝑚 + 1 ) ) ) |
58 |
55 57
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 𝑟 < ( 𝑚 + 1 ) ) |
59 |
50 52 43 53 58
|
lttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) < ( 𝑚 + 1 ) ) |
60 |
31
|
mulid1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝑚 + 1 ) · 1 ) = ( 𝑚 + 1 ) ) |
61 |
59 60
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ‘ 𝐴 ) < ( ( 𝑚 + 1 ) · 1 ) ) |
62 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 1 ∈ ℝ ) |
63 |
50 62 44
|
ltdivmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) < 1 ↔ ( abs ‘ 𝐴 ) < ( ( 𝑚 + 1 ) · 1 ) ) ) |
64 |
61 63
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑚 + 1 ) ) < 1 ) |
65 |
49 64
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) < 1 ) |
66 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
67 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
68 |
|
1rp |
⊢ 1 ∈ ℝ+ |
69 |
|
rpxr |
⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) |
70 |
68 69
|
mp1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → 1 ∈ ℝ* ) |
71 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 1 ∈ ℂ ∧ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ℂ ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) < 1 ) ) |
72 |
67 70 30 35 71
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ( abs ∘ − ) 1 ) < 1 ) ) |
73 |
65 72
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
74 |
23 73
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
75 |
74
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) : ( ℤ≥ ‘ 𝑟 ) ⟶ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
76 |
27
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ℤ≥ ‘ 𝑟 ) ⊆ ℕ ) |
77 |
76
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) |
78 |
|
nnex |
⊢ ℕ ∈ V |
79 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ∈ V |
80 |
79
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ∈ V ) |
81 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 / ( 𝑚 + 1 ) ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
83 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) |
84 |
|
ovex |
⊢ ( 𝐴 / ( 𝑛 + 1 ) ) ∈ V |
85 |
82 83 84
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
86 |
85
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
87 |
3 4 12 4 80 86
|
divcnvshft |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ⇝ 0 ) |
88 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
89 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ∈ V |
90 |
89
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ∈ V ) |
91 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
92 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
93 |
92
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
94 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
95 |
93 94
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℂ ) |
96 |
92
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
97 |
96
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ≠ 0 ) |
98 |
91 95 97
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / ( 𝑛 + 1 ) ) ∈ ℂ ) |
99 |
86 98
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
100 |
82
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
101 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) |
102 |
|
ovex |
⊢ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ∈ V |
103 |
100 101 102
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ‘ 𝑛 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ‘ 𝑛 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
105 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) + 1 ) = ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) |
106 |
104 105
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ‘ 𝑛 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / ( 𝑚 + 1 ) ) ) ‘ 𝑛 ) + 1 ) ) |
107 |
3 4 87 88 90 99 106
|
climaddc1 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ ( 0 + 1 ) ) |
108 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
109 |
107 108
|
breqtrdi |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) |
111 |
|
climres |
⊢ ( ( 𝑟 ∈ ℤ ∧ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 1 ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) ) |
112 |
18 89 111
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 1 ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) ) |
113 |
110 112
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 1 ) |
114 |
77 113
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⇝ 1 ) |
115 |
68
|
a1i |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ+ ) |
116 |
19
|
ellogdm |
⊢ ( 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 1 ∈ ℂ ∧ ( 1 ∈ ℝ → 1 ∈ ℝ+ ) ) ) |
117 |
36 115 116
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) |
118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
119 |
16 18 21 75 114 118
|
climcncf |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) ) |
120 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
121 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
122 |
120 121
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
123 |
19
|
logdmss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
124 |
123 74
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ) → ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ∈ ( ℂ ∖ { 0 } ) ) |
125 |
122 124
|
cofmpt |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( log ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
126 |
|
frn |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) : ( ℤ≥ ‘ 𝑟 ) ⟶ ( ℂ ∖ ( -∞ (,] 0 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
127 |
|
cores |
⊢ ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( log ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
128 |
75 126 127
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( log ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
129 |
76
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
130 |
125 128 129
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑟 ) ↦ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ) |
131 |
|
fvres |
⊢ ( 1 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) = ( log ‘ 1 ) ) |
132 |
117 131
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) = ( log ‘ 1 ) ) |
133 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
134 |
132 133
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ‘ 1 ) = 0 ) |
135 |
119 130 134
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 0 ) |
136 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ∈ V |
137 |
|
climres |
⊢ ( ( 𝑟 ∈ ℤ ∧ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) ) |
138 |
18 136 137
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ↾ ( ℤ≥ ‘ 𝑟 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) ) |
139 |
135 138
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℕ ∧ ( abs ‘ 𝐴 ) < 𝑟 ) ) → ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) |
140 |
15 139
|
rexlimddv |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ⇝ 0 ) |
141 |
12 88
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℂ ) |
142 |
8
|
dmgmn0 |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ≠ 0 ) |
143 |
141 142
|
logcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
144 |
78
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ∈ V |
145 |
144
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ∈ V ) |
146 |
82
|
fvoveq1d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
147 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) |
148 |
|
fvex |
⊢ ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ∈ V |
149 |
146 147 148
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
151 |
98 94
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ∈ ℂ ) |
152 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
153 |
152 96
|
dmgmdivn0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ≠ 0 ) |
154 |
151 153
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ∈ ℂ ) |
155 |
150 154
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
156 |
146
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
157 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) |
158 |
|
ovex |
⊢ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ∈ V |
159 |
156 157 158
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
161 |
150
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( 𝐴 + 1 ) ) − ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
162 |
160 161
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( ( 𝑚 ∈ ℕ ↦ ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ‘ 𝑛 ) ) ) |
163 |
3 4 140 143 145 155 162
|
climsubc2 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ⇝ ( ( log ‘ ( 𝐴 + 1 ) ) − 0 ) ) |
164 |
143
|
subid1d |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐴 + 1 ) ) − 0 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
165 |
163 164
|
breqtrd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ⇝ ( log ‘ ( 𝐴 + 1 ) ) ) |
166 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
167 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
168 |
|
oveq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 + 1 ) = ( 𝑘 + 1 ) ) |
169 |
|
id |
⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) |
170 |
168 169
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑘 + 1 ) / 𝑘 ) ) |
171 |
170
|
fveq2d |
⊢ ( 𝑚 = 𝑘 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) |
172 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) |
173 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 + 1 ) / 𝑚 ) = ( ( 𝐴 + 1 ) / 𝑘 ) ) |
174 |
173
|
fvoveq1d |
⊢ ( 𝑚 = 𝑘 → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) = ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) |
175 |
172 174
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) |
176 |
|
ovex |
⊢ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ V |
177 |
175 5 176
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) |
178 |
167 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) |
179 |
92 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
180 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
181 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 1 ∈ ℂ ) |
182 |
180 181
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + 1 ) ∈ ℂ ) |
183 |
167
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
184 |
183
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
185 |
167
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℝ+ ) |
186 |
184 185
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 + 1 ) / 𝑘 ) ∈ ℝ+ ) |
187 |
186
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ∈ ℝ ) |
188 |
187
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ∈ ℂ ) |
189 |
182 188
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ∈ ℂ ) |
190 |
167
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℂ ) |
191 |
167
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ≠ 0 ) |
192 |
182 190 191
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) / 𝑘 ) ∈ ℂ ) |
193 |
192 181
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ∈ ℂ ) |
194 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
195 |
194 167
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ≠ 0 ) |
196 |
193 195
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ∈ ℂ ) |
197 |
189 196
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
198 |
178 179 197
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
199 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
200 |
199 197
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
201 |
198 200
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
202 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
203 |
202 154
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ∈ ℂ ) |
204 |
160 203
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
205 |
180 188
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ∈ ℂ ) |
206 |
180 190 191
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 / 𝑘 ) ∈ ℂ ) |
207 |
206 181
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / 𝑘 ) + 1 ) ∈ ℂ ) |
208 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
209 |
208 167
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / 𝑘 ) + 1 ) ≠ 0 ) |
210 |
207 209
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ∈ ℂ ) |
211 |
205 210
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
212 |
199 211
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
213 |
200 212
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
214 |
189 196 205 210
|
sub4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) |
215 |
180 181
|
pncan2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) − 𝐴 ) = 1 ) |
216 |
215
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( 1 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) |
217 |
182 180 188
|
subdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) ) |
218 |
188
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) |
219 |
216 217 218
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) = ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) |
220 |
219
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) |
221 |
188 196 210
|
subsubd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) + ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
222 |
188 196
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
223 |
222 210
|
addcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) + ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) + ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) ) |
224 |
210 196 188
|
subsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) + ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) ) |
225 |
183
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
226 |
180 225
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + ( 𝑘 + 1 ) ) ∈ ℂ ) |
227 |
183
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
228 |
|
dmgmaddn0 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ) |
229 |
208 227 228
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ) |
230 |
226 229
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
231 |
184
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
232 |
231
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
233 |
185
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
234 |
233
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
235 |
230 232 234
|
nnncan2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) − ( ( log ‘ ( 𝑘 + 1 ) ) − ( log ‘ 𝑘 ) ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
236 |
182 190 190 191
|
divdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) + 𝑘 ) / 𝑘 ) = ( ( ( 𝐴 + 1 ) / 𝑘 ) + ( 𝑘 / 𝑘 ) ) ) |
237 |
180 190 181
|
add32d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 𝑘 ) + 1 ) = ( ( 𝐴 + 1 ) + 𝑘 ) ) |
238 |
180 190 181
|
addassd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 𝑘 ) + 1 ) = ( 𝐴 + ( 𝑘 + 1 ) ) ) |
239 |
237 238
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + 1 ) + 𝑘 ) = ( 𝐴 + ( 𝑘 + 1 ) ) ) |
240 |
239
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) + 𝑘 ) / 𝑘 ) = ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) |
241 |
190 191
|
dividd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 / 𝑘 ) = 1 ) |
242 |
241
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + ( 𝑘 / 𝑘 ) ) = ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) |
243 |
236 240 242
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) = ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) |
244 |
243
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) = ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) ) |
245 |
|
logdiv2 |
⊢ ( ( ( 𝐴 + ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ∧ 𝑘 ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) ) |
246 |
226 229 185 245
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / 𝑘 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) ) |
247 |
244 246
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) ) |
248 |
184 185
|
relogdivd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) = ( ( log ‘ ( 𝑘 + 1 ) ) − ( log ‘ 𝑘 ) ) ) |
249 |
247 248
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ 𝑘 ) ) − ( ( log ‘ ( 𝑘 + 1 ) ) − ( log ‘ 𝑘 ) ) ) ) |
250 |
183
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 1 ) ≠ 0 ) |
251 |
180 225 225 250
|
divdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) = ( ( 𝐴 / ( 𝑘 + 1 ) ) + ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
252 |
225 250
|
dividd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) = 1 ) |
253 |
252
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / ( 𝑘 + 1 ) ) + ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) |
254 |
251 253
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) = ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) |
255 |
254
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) = ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) ) |
256 |
|
logdiv2 |
⊢ ( ( ( 𝐴 + ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐴 + ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝑘 + 1 ) ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
257 |
226 229 184 256
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 + ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
258 |
255 257
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) = ( ( log ‘ ( 𝐴 + ( 𝑘 + 1 ) ) ) − ( log ‘ ( 𝑘 + 1 ) ) ) ) |
259 |
235 249 258
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) = ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) |
260 |
259
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
261 |
224 260
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) + ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
262 |
221 223 261
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) − ( ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
263 |
214 220 262
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
264 |
263
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) ) |
265 |
199 197 211
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) |
266 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑘 ) ) |
267 |
266
|
fvoveq1d |
⊢ ( 𝑥 = 𝑘 → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) |
268 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 / 𝑥 ) = ( 𝐴 / ( 𝑘 + 1 ) ) ) |
269 |
268
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) |
270 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 1 ) ) |
271 |
270
|
fvoveq1d |
⊢ ( 𝑥 = 1 → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) ) |
272 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐴 / 𝑥 ) = ( 𝐴 / ( 𝑛 + 1 ) ) ) |
273 |
272
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) |
274 |
92
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
275 |
96 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
276 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
277 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) → 𝑥 ∈ ℕ ) |
278 |
277
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℕ ) |
279 |
278
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℂ ) |
280 |
278
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ≠ 0 ) |
281 |
276 279 280
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
282 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 1 ∈ ℂ ) |
283 |
281 282
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( ( 𝐴 / 𝑥 ) + 1 ) ∈ ℂ ) |
284 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
285 |
284 278
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( ( 𝐴 / 𝑥 ) + 1 ) ≠ 0 ) |
286 |
283 285
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( log ‘ ( ( 𝐴 / 𝑥 ) + 1 ) ) ∈ ℂ ) |
287 |
267 269 271 273 274 275 286
|
telfsum |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
288 |
91
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / 1 ) = 𝐴 ) |
289 |
288
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
290 |
289
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( ( 𝐴 / 1 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
291 |
287 290
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑘 + 1 ) ) + 1 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
292 |
264 265 291
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) |
293 |
292
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) ) |
294 |
213 293
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) ) |
295 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) ) |
296 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑘 ) ) |
297 |
296
|
fvoveq1d |
⊢ ( 𝑚 = 𝑘 → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) |
298 |
295 297
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) = ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
299 |
|
ovex |
⊢ ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ∈ V |
300 |
298 1 299
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
301 |
167 300
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) ) |
302 |
301 179 211
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝐴 · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑘 ) + 1 ) ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) |
303 |
160
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) = ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ) |
304 |
198 303
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑘 + 1 ) / 𝑘 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑘 ) + 1 ) ) ) − ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑛 + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) − ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ) ) |
305 |
294 302 304
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) = ( ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 + 1 ) · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( ( 𝐴 + 1 ) / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) − ( ( 𝑚 ∈ ℕ ↦ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ ( ( 𝐴 / ( 𝑚 + 1 ) ) + 1 ) ) ) ) ‘ 𝑛 ) ) ) |
306 |
3 4 9 11 165 201 204 305
|
climsub |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( ( log Γ ‘ ( 𝐴 + 1 ) ) + ( log ‘ ( 𝐴 + 1 ) ) ) − ( log ‘ ( 𝐴 + 1 ) ) ) ) |
307 |
|
lgamcl |
⊢ ( ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
308 |
8 307
|
syl |
⊢ ( 𝜑 → ( log Γ ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
309 |
308 143
|
pncand |
⊢ ( 𝜑 → ( ( ( log Γ ‘ ( 𝐴 + 1 ) ) + ( log ‘ ( 𝐴 + 1 ) ) ) − ( log ‘ ( 𝐴 + 1 ) ) ) = ( log Γ ‘ ( 𝐴 + 1 ) ) ) |
310 |
306 309
|
breqtrd |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( log Γ ‘ ( 𝐴 + 1 ) ) ) |