| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamcvg.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 2 |  | lgamcvg.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 4 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 6 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 8 | 2 7 | dmgmaddnn0 | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 9 | 5 8 | lgamcvg | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) )  ⇝  ( ( log Γ ‘ ( 𝐴  +  1 ) )  +  ( log ‘ ( 𝐴  +  1 ) ) ) ) | 
						
							| 10 |  | seqex | ⊢ seq 1 (  +  ,  𝐺 )  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  ∈  V ) | 
						
							| 12 | 2 | eldifad | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 12 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 14 |  | arch | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℝ  →  ∃ 𝑟  ∈  ℕ ( abs ‘ 𝐴 )  <  𝑟 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℕ ( abs ‘ 𝐴 )  <  𝑟 ) | 
						
							| 16 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑟 )  =  ( ℤ≥ ‘ 𝑟 ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  𝑟  ∈  ℕ ) | 
						
							| 18 | 17 | nnzd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  𝑟  ∈  ℤ ) | 
						
							| 19 |  | eqid | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 20 | 19 | logcn | ⊢ ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ ) | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( ( ℂ  ∖  ( -∞ (,] 0 ) ) –cn→ ℂ ) ) | 
						
							| 22 |  | eqid | ⊢ ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  =  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 ) | 
						
							| 23 | 22 | dvlog2lem | ⊢ ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 24 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 25 |  | eluznn | ⊢ ( ( 𝑟  ∈  ℕ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝑟  ∈  ℕ  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  →  𝑚  ∈  ℕ ) ) | 
						
							| 27 | 26 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  →  𝑚  ∈  ℕ ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 29 | 28 | nncnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 30 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  1  ∈  ℂ ) | 
						
							| 31 | 29 30 | addcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝑚  +  1 )  ∈  ℂ ) | 
						
							| 32 | 28 | peano2nnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 33 | 32 | nnne0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝑚  +  1 )  ≠  0 ) | 
						
							| 34 | 24 31 33 | divcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝐴  /  ( 𝑚  +  1 ) )  ∈  ℂ ) | 
						
							| 35 | 34 30 | addcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ℂ ) | 
						
							| 36 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 37 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 38 | 37 | cnmetdval | ⊢ ( ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ( abs  ∘   −  ) 1 )  =  ( abs ‘ ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  −  1 ) ) ) | 
						
							| 39 | 35 36 38 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ( abs  ∘   −  ) 1 )  =  ( abs ‘ ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  −  1 ) ) ) | 
						
							| 40 | 34 30 | pncand | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  −  1 )  =  ( 𝐴  /  ( 𝑚  +  1 ) ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  −  1 ) )  =  ( abs ‘ ( 𝐴  /  ( 𝑚  +  1 ) ) ) ) | 
						
							| 42 | 24 31 33 | absdivd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ ( 𝐴  /  ( 𝑚  +  1 ) ) )  =  ( ( abs ‘ 𝐴 )  /  ( abs ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 43 | 32 | nnred | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝑚  +  1 )  ∈  ℝ ) | 
						
							| 44 | 32 | nnrpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 45 | 44 | rpge0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  0  ≤  ( 𝑚  +  1 ) ) | 
						
							| 46 | 43 45 | absidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ ( 𝑚  +  1 ) )  =  ( 𝑚  +  1 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( abs ‘ 𝐴 )  /  ( abs ‘ ( 𝑚  +  1 ) ) )  =  ( ( abs ‘ 𝐴 )  /  ( 𝑚  +  1 ) ) ) | 
						
							| 48 | 42 47 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ ( 𝐴  /  ( 𝑚  +  1 ) ) )  =  ( ( abs ‘ 𝐴 )  /  ( 𝑚  +  1 ) ) ) | 
						
							| 49 | 39 41 48 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ( abs  ∘   −  ) 1 )  =  ( ( abs ‘ 𝐴 )  /  ( 𝑚  +  1 ) ) ) | 
						
							| 50 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 51 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑟  ∈  ℕ ) | 
						
							| 52 | 51 | nnred | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑟  ∈  ℝ ) | 
						
							| 53 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ 𝐴 )  <  𝑟 ) | 
						
							| 54 |  | eluzle | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  →  𝑟  ≤  𝑚 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑟  ≤  𝑚 ) | 
						
							| 56 |  | nnleltp1 | ⊢ ( ( 𝑟  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( 𝑟  ≤  𝑚  ↔  𝑟  <  ( 𝑚  +  1 ) ) ) | 
						
							| 57 | 51 28 56 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( 𝑟  ≤  𝑚  ↔  𝑟  <  ( 𝑚  +  1 ) ) ) | 
						
							| 58 | 55 57 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  𝑟  <  ( 𝑚  +  1 ) ) | 
						
							| 59 | 50 52 43 53 58 | lttrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ 𝐴 )  <  ( 𝑚  +  1 ) ) | 
						
							| 60 | 31 | mulridd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( 𝑚  +  1 )  ·  1 )  =  ( 𝑚  +  1 ) ) | 
						
							| 61 | 59 60 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs ‘ 𝐴 )  <  ( ( 𝑚  +  1 )  ·  1 ) ) | 
						
							| 62 |  | 1red | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  1  ∈  ℝ ) | 
						
							| 63 | 50 62 44 | ltdivmuld | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( ( abs ‘ 𝐴 )  /  ( 𝑚  +  1 ) )  <  1  ↔  ( abs ‘ 𝐴 )  <  ( ( 𝑚  +  1 )  ·  1 ) ) ) | 
						
							| 64 | 61 63 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( abs ‘ 𝐴 )  /  ( 𝑚  +  1 ) )  <  1 ) | 
						
							| 65 | 49 64 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ( abs  ∘   −  ) 1 )  <  1 ) | 
						
							| 66 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 67 | 66 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 68 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 69 |  | rpxr | ⊢ ( 1  ∈  ℝ+  →  1  ∈  ℝ* ) | 
						
							| 70 | 68 69 | mp1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  1  ∈  ℝ* ) | 
						
							| 71 |  | elbl3 | ⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℝ* )  ∧  ( 1  ∈  ℂ  ∧  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ℂ ) )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ( abs  ∘   −  ) 1 )  <  1 ) ) | 
						
							| 72 | 67 70 30 35 71 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ( abs  ∘   −  ) 1 )  <  1 ) ) | 
						
							| 73 | 65 72 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) | 
						
							| 74 | 23 73 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 75 | 74 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) : ( ℤ≥ ‘ 𝑟 ) ⟶ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 76 | 27 | ssrdv | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ℤ≥ ‘ 𝑟 )  ⊆  ℕ ) | 
						
							| 77 | 76 | resmptd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) | 
						
							| 78 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 79 | 78 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) )  ∈  V | 
						
							| 80 | 79 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) )  ∈  V ) | 
						
							| 81 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝐴  /  ( 𝑚  +  1 ) )  =  ( 𝐴  /  ( 𝑛  +  1 ) ) ) | 
						
							| 83 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) ) | 
						
							| 84 |  | ovex | ⊢ ( 𝐴  /  ( 𝑛  +  1 ) )  ∈  V | 
						
							| 85 | 82 83 84 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) ) ‘ 𝑛 )  =  ( 𝐴  /  ( 𝑛  +  1 ) ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) ) ‘ 𝑛 )  =  ( 𝐴  /  ( 𝑛  +  1 ) ) ) | 
						
							| 87 | 3 4 12 4 80 86 | divcnvshft | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) )  ⇝  0 ) | 
						
							| 88 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 89 | 78 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ∈  V | 
						
							| 90 | 89 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ∈  V ) | 
						
							| 91 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 92 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 93 | 92 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 94 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 95 | 93 94 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℂ ) | 
						
							| 96 | 92 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 97 | 96 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 98 | 91 95 97 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  /  ( 𝑛  +  1 ) )  ∈  ℂ ) | 
						
							| 99 | 86 98 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 100 | 82 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  =  ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) | 
						
							| 101 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) | 
						
							| 102 |  | ovex | ⊢ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 )  ∈  V | 
						
							| 103 | 100 101 102 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ‘ 𝑛 )  =  ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ‘ 𝑛 )  =  ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) | 
						
							| 105 | 86 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) ) ‘ 𝑛 )  +  1 )  =  ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) | 
						
							| 106 | 104 105 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ‘ 𝑛 )  =  ( ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  ( 𝑚  +  1 ) ) ) ‘ 𝑛 )  +  1 ) ) | 
						
							| 107 | 3 4 87 88 90 99 106 | climaddc1 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⇝  ( 0  +  1 ) ) | 
						
							| 108 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 109 | 107 108 | breqtrdi | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⇝  1 ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⇝  1 ) | 
						
							| 111 |  | climres | ⊢ ( ( 𝑟  ∈  ℤ  ∧  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ∈  V )  →  ( ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  ⇝  1  ↔  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⇝  1 ) ) | 
						
							| 112 | 18 89 111 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  ⇝  1  ↔  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⇝  1 ) ) | 
						
							| 113 | 110 112 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  ⇝  1 ) | 
						
							| 114 | 77 113 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⇝  1 ) | 
						
							| 115 | 68 | a1i | ⊢ ( 1  ∈  ℝ  →  1  ∈  ℝ+ ) | 
						
							| 116 | 19 | ellogdm | ⊢ ( 1  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↔  ( 1  ∈  ℂ  ∧  ( 1  ∈  ℝ  →  1  ∈  ℝ+ ) ) ) | 
						
							| 117 | 36 115 116 | mpbir2an | ⊢ 1  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 118 | 117 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  1  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 119 | 16 18 21 75 114 118 | climcncf | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ⇝  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ‘ 1 ) ) | 
						
							| 120 |  | logf1o | ⊢ log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log | 
						
							| 121 |  | f1of | ⊢ ( log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log  →  log : ( ℂ  ∖  { 0 } ) ⟶ ran  log ) | 
						
							| 122 | 120 121 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  log : ( ℂ  ∖  { 0 } ) ⟶ ran  log ) | 
						
							| 123 | 19 | logdmss | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ( ℂ  ∖  { 0 } ) | 
						
							| 124 | 123 74 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑟 ) )  →  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 125 | 122 124 | cofmpt | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( log  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) | 
						
							| 126 |  | frn | ⊢ ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) : ( ℤ≥ ‘ 𝑟 ) ⟶ ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 127 |  | cores | ⊢ ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  =  ( log  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) | 
						
							| 128 | 75 126 127 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  =  ( log  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) | 
						
							| 129 | 76 | resmptd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) | 
						
							| 130 | 125 128 129 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∘  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑟 )  ↦  ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  =  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ↾  ( ℤ≥ ‘ 𝑟 ) ) ) | 
						
							| 131 |  | fvres | ⊢ ( 1  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ‘ 1 )  =  ( log ‘ 1 ) ) | 
						
							| 132 | 117 131 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ‘ 1 )  =  ( log ‘ 1 ) ) | 
						
							| 133 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 134 | 132 133 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( log  ↾  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ‘ 1 )  =  0 ) | 
						
							| 135 | 119 130 134 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  ⇝  0 ) | 
						
							| 136 | 78 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ∈  V | 
						
							| 137 |  | climres | ⊢ ( ( 𝑟  ∈  ℤ  ∧  ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ∈  V )  →  ( ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  ⇝  0  ↔  ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ⇝  0 ) ) | 
						
							| 138 | 18 136 137 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ↾  ( ℤ≥ ‘ 𝑟 ) )  ⇝  0  ↔  ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ⇝  0 ) ) | 
						
							| 139 | 135 138 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  ( abs ‘ 𝐴 )  <  𝑟 ) )  →  ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ⇝  0 ) | 
						
							| 140 | 15 139 | rexlimddv | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  ⇝  0 ) | 
						
							| 141 | 12 88 | addcld | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 142 | 8 | dmgmn0 | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ≠  0 ) | 
						
							| 143 | 141 142 | logcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐴  +  1 ) )  ∈  ℂ ) | 
						
							| 144 | 78 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) )  ∈  V | 
						
							| 145 | 144 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) )  ∈  V ) | 
						
							| 146 | 82 | fvoveq1d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) | 
						
							| 147 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) | 
						
							| 148 |  | fvex | ⊢ ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) )  ∈  V | 
						
							| 149 | 146 147 148 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ‘ 𝑛 )  =  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) | 
						
							| 150 | 149 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ‘ 𝑛 )  =  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) | 
						
							| 151 | 98 94 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 )  ∈  ℂ ) | 
						
							| 152 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 153 | 152 96 | dmgmdivn0 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 )  ≠  0 ) | 
						
							| 154 | 151 153 | logcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) )  ∈  ℂ ) | 
						
							| 155 | 150 154 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 156 | 146 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 157 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) | 
						
							| 158 |  | ovex | ⊢ ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) )  ∈  V | 
						
							| 159 | 156 157 158 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 161 | 150 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ‘ 𝑛 ) )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 162 | 160 161 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( ( 𝑚  ∈  ℕ  ↦  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 163 | 3 4 140 143 145 155 162 | climsubc2 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) )  ⇝  ( ( log ‘ ( 𝐴  +  1 ) )  −  0 ) ) | 
						
							| 164 | 143 | subid1d | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐴  +  1 ) )  −  0 )  =  ( log ‘ ( 𝐴  +  1 ) ) ) | 
						
							| 165 | 163 164 | breqtrd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) )  ⇝  ( log ‘ ( 𝐴  +  1 ) ) ) | 
						
							| 166 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  𝑘  ∈  ℕ ) | 
						
							| 167 | 166 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 168 |  | oveq1 | ⊢ ( 𝑚  =  𝑘  →  ( 𝑚  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 169 |  | id | ⊢ ( 𝑚  =  𝑘  →  𝑚  =  𝑘 ) | 
						
							| 170 | 168 169 | oveq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝑚  +  1 )  /  𝑚 )  =  ( ( 𝑘  +  1 )  /  𝑘 ) ) | 
						
							| 171 | 170 | fveq2d | ⊢ ( 𝑚  =  𝑘  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  =  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) | 
						
							| 172 | 171 | oveq2d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) ) | 
						
							| 173 |  | oveq2 | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐴  +  1 )  /  𝑚 )  =  ( ( 𝐴  +  1 )  /  𝑘 ) ) | 
						
							| 174 | 173 | fvoveq1d | ⊢ ( 𝑚  =  𝑘  →  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) | 
						
							| 175 | 172 174 | oveq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) )  =  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 176 |  | ovex | ⊢ ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  ∈  V | 
						
							| 177 | 175 5 176 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 178 | 167 177 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 179 | 92 3 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 180 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 181 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  1  ∈  ℂ ) | 
						
							| 182 | 180 181 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 183 | 167 | peano2nnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 184 | 183 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘  +  1 )  ∈  ℝ+ ) | 
						
							| 185 | 167 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℝ+ ) | 
						
							| 186 | 184 185 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝑘  +  1 )  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 187 | 186 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  ∈  ℝ ) | 
						
							| 188 | 187 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 189 | 182 188 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 190 | 167 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 191 | 167 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ≠  0 ) | 
						
							| 192 | 182 190 191 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  1 )  /  𝑘 )  ∈  ℂ ) | 
						
							| 193 | 192 181 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 194 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐴  +  1 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 195 | 194 167 | dmgmdivn0 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 196 | 193 195 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 197 | 189 196 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 198 | 178 179 197 | fsumser | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  =  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 199 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 200 | 199 197 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 201 | 198 200 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 202 | 143 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( 𝐴  +  1 ) )  ∈  ℂ ) | 
						
							| 203 | 202 154 | subcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 204 | 160 203 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 205 | 180 188 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 206 | 180 190 191 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐴  /  𝑘 )  ∈  ℂ ) | 
						
							| 207 | 206 181 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  /  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 208 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 209 | 208 167 | dmgmdivn0 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  /  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 210 | 207 209 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 211 | 205 210 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 212 | 199 211 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 213 | 200 212 | nncand | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 214 | 189 196 205 210 | sub4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 215 | 180 181 | pncan2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  1 )  −  𝐴 )  =  1 ) | 
						
							| 216 | 215 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  −  𝐴 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( 1  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) ) | 
						
							| 217 | 182 180 188 | subdird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  −  𝐴 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) ) ) | 
						
							| 218 | 188 | mullidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 1  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) | 
						
							| 219 | 216 217 218 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  =  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) | 
						
							| 220 | 219 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 221 | 188 196 210 | subsubd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  +  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 222 | 188 196 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 223 | 222 210 | addcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  +  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  =  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  +  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 224 | 210 196 188 | subsub2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  =  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  +  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 225 | 183 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 226 | 180 225 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐴  +  ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 227 | 183 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 228 |  | dmgmaddn0 | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 𝐴  +  ( 𝑘  +  1 ) )  ≠  0 ) | 
						
							| 229 | 208 227 228 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐴  +  ( 𝑘  +  1 ) )  ≠  0 ) | 
						
							| 230 | 226 229 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 231 | 184 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 232 | 231 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 233 | 185 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 234 | 233 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 235 | 230 232 234 | nnncan2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ 𝑘 ) )  −  ( ( log ‘ ( 𝑘  +  1 ) )  −  ( log ‘ 𝑘 ) ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 236 | 182 190 190 191 | divdird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  +  𝑘 )  /  𝑘 )  =  ( ( ( 𝐴  +  1 )  /  𝑘 )  +  ( 𝑘  /  𝑘 ) ) ) | 
						
							| 237 | 180 190 181 | add32d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  𝑘 )  +  1 )  =  ( ( 𝐴  +  1 )  +  𝑘 ) ) | 
						
							| 238 | 180 190 181 | addassd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  𝑘 )  +  1 )  =  ( 𝐴  +  ( 𝑘  +  1 ) ) ) | 
						
							| 239 | 237 238 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  1 )  +  𝑘 )  =  ( 𝐴  +  ( 𝑘  +  1 ) ) ) | 
						
							| 240 | 239 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  +  𝑘 )  /  𝑘 )  =  ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  𝑘 ) ) | 
						
							| 241 | 190 191 | dividd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘  /  𝑘 )  =  1 ) | 
						
							| 242 | 241 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  /  𝑘 )  +  ( 𝑘  /  𝑘 ) )  =  ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) | 
						
							| 243 | 236 240 242 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 )  =  ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  𝑘 ) ) | 
						
							| 244 | 243 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  𝑘 ) ) ) | 
						
							| 245 |  | logdiv2 | ⊢ ( ( ( 𝐴  +  ( 𝑘  +  1 ) )  ∈  ℂ  ∧  ( 𝐴  +  ( 𝑘  +  1 ) )  ≠  0  ∧  𝑘  ∈  ℝ+ )  →  ( log ‘ ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  𝑘 ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ 𝑘 ) ) ) | 
						
							| 246 | 226 229 185 245 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  𝑘 ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ 𝑘 ) ) ) | 
						
							| 247 | 244 246 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ 𝑘 ) ) ) | 
						
							| 248 | 184 185 | relogdivd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  =  ( ( log ‘ ( 𝑘  +  1 ) )  −  ( log ‘ 𝑘 ) ) ) | 
						
							| 249 | 247 248 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ 𝑘 ) )  −  ( ( log ‘ ( 𝑘  +  1 ) )  −  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 250 | 183 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘  +  1 )  ≠  0 ) | 
						
							| 251 | 180 225 225 250 | divdird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  ( 𝑘  +  1 ) )  =  ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  ( ( 𝑘  +  1 )  /  ( 𝑘  +  1 ) ) ) ) | 
						
							| 252 | 225 250 | dividd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝑘  +  1 )  /  ( 𝑘  +  1 ) )  =  1 ) | 
						
							| 253 | 252 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  ( ( 𝑘  +  1 )  /  ( 𝑘  +  1 ) ) )  =  ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 254 | 251 253 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 )  =  ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  ( 𝑘  +  1 ) ) ) | 
						
							| 255 | 254 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) )  =  ( log ‘ ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  ( 𝑘  +  1 ) ) ) ) | 
						
							| 256 |  | logdiv2 | ⊢ ( ( ( 𝐴  +  ( 𝑘  +  1 ) )  ∈  ℂ  ∧  ( 𝐴  +  ( 𝑘  +  1 ) )  ≠  0  ∧  ( 𝑘  +  1 )  ∈  ℝ+ )  →  ( log ‘ ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  ( 𝑘  +  1 ) ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 257 | 226 229 184 256 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝐴  +  ( 𝑘  +  1 ) )  /  ( 𝑘  +  1 ) ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 258 | 255 257 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) )  =  ( ( log ‘ ( 𝐴  +  ( 𝑘  +  1 ) ) )  −  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 259 | 235 249 258 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  =  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) | 
						
							| 260 | 259 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) )  =  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) ) | 
						
							| 261 | 224 260 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  +  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) ) )  =  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) ) | 
						
							| 262 | 221 223 261 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) )  −  ( ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) ) | 
						
							| 263 | 214 220 262 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) ) | 
						
							| 264 | 263 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) ) | 
						
							| 265 | 199 197 211 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 266 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐴  /  𝑥 )  =  ( 𝐴  /  𝑘 ) ) | 
						
							| 267 | 266 | fvoveq1d | ⊢ ( 𝑥  =  𝑘  →  ( log ‘ ( ( 𝐴  /  𝑥 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) | 
						
							| 268 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐴  /  𝑥 )  =  ( 𝐴  /  ( 𝑘  +  1 ) ) ) | 
						
							| 269 | 268 | fvoveq1d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( log ‘ ( ( 𝐴  /  𝑥 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) ) | 
						
							| 270 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( 𝐴  /  𝑥 )  =  ( 𝐴  /  1 ) ) | 
						
							| 271 | 270 | fvoveq1d | ⊢ ( 𝑥  =  1  →  ( log ‘ ( ( 𝐴  /  𝑥 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  1 )  +  1 ) ) ) | 
						
							| 272 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝐴  /  𝑥 )  =  ( 𝐴  /  ( 𝑛  +  1 ) ) ) | 
						
							| 273 | 272 | fvoveq1d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( log ‘ ( ( 𝐴  /  𝑥 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) | 
						
							| 274 | 92 | nnzd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℤ ) | 
						
							| 275 | 96 3 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 276 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 277 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) )  →  𝑥  ∈  ℕ ) | 
						
							| 278 | 277 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  𝑥  ∈  ℕ ) | 
						
							| 279 | 278 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 280 | 278 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  𝑥  ≠  0 ) | 
						
							| 281 | 276 279 280 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  ( 𝐴  /  𝑥 )  ∈  ℂ ) | 
						
							| 282 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  1  ∈  ℂ ) | 
						
							| 283 | 281 282 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  ( ( 𝐴  /  𝑥 )  +  1 )  ∈  ℂ ) | 
						
							| 284 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 285 | 284 278 | dmgmdivn0 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  ( ( 𝐴  /  𝑥 )  +  1 )  ≠  0 ) | 
						
							| 286 | 283 285 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... ( 𝑛  +  1 ) ) )  →  ( log ‘ ( ( 𝐴  /  𝑥 )  +  1 ) )  ∈  ℂ ) | 
						
							| 287 | 267 269 271 273 274 275 286 | telfsum | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) )  =  ( ( log ‘ ( ( 𝐴  /  1 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 288 | 91 | div1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  /  1 )  =  𝐴 ) | 
						
							| 289 | 288 | fvoveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝐴  /  1 )  +  1 ) )  =  ( log ‘ ( 𝐴  +  1 ) ) ) | 
						
							| 290 | 289 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( log ‘ ( ( 𝐴  /  1 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 291 | 287 290 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑘  +  1 ) )  +  1 ) ) )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 292 | 264 265 291 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) | 
						
							| 293 | 292 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) )  =  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) ) | 
						
							| 294 | 213 293 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  =  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) ) ) | 
						
							| 295 | 171 | oveq2d | ⊢ ( 𝑚  =  𝑘  →  ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) ) ) | 
						
							| 296 |  | oveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 𝐴  /  𝑚 )  =  ( 𝐴  /  𝑘 ) ) | 
						
							| 297 | 296 | fvoveq1d | ⊢ ( 𝑚  =  𝑘  →  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) | 
						
							| 298 | 295 297 | oveq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 299 |  | ovex | ⊢ ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  ∈  V | 
						
							| 300 | 298 1 299 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 301 | 167 300 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) ) ) | 
						
							| 302 | 301 179 211 | fsumser | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( 𝐴  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑘 )  +  1 ) ) )  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 303 | 160 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) )  =  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 304 | 198 303 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑘  +  1 )  /  𝑘 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑘 )  +  1 ) ) )  −  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑛  +  1 ) )  +  1 ) ) ) )  =  ( ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  −  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 305 | 294 302 304 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑛 )  =  ( ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴  +  1 )  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( ( 𝐴  +  1 )  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  −  ( ( 𝑚  ∈  ℕ  ↦  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ ( ( 𝐴  /  ( 𝑚  +  1 ) )  +  1 ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 306 | 3 4 9 11 165 201 204 305 | climsub | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  ⇝  ( ( ( log Γ ‘ ( 𝐴  +  1 ) )  +  ( log ‘ ( 𝐴  +  1 ) ) )  −  ( log ‘ ( 𝐴  +  1 ) ) ) ) | 
						
							| 307 |  | lgamcl | ⊢ ( ( 𝐴  +  1 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ ( 𝐴  +  1 ) )  ∈  ℂ ) | 
						
							| 308 | 8 307 | syl | ⊢ ( 𝜑  →  ( log Γ ‘ ( 𝐴  +  1 ) )  ∈  ℂ ) | 
						
							| 309 | 308 143 | pncand | ⊢ ( 𝜑  →  ( ( ( log Γ ‘ ( 𝐴  +  1 ) )  +  ( log ‘ ( 𝐴  +  1 ) ) )  −  ( log ‘ ( 𝐴  +  1 ) ) )  =  ( log Γ ‘ ( 𝐴  +  1 ) ) ) | 
						
							| 310 | 306 309 | breqtrd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  ⇝  ( log Γ ‘ ( 𝐴  +  1 ) ) ) |