| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamcvg.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 2 |  | lgamcvg.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | eqid | ⊢ { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑦  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑦 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) }  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑦  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑦 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 4 | 3 2 1 | lgamcvglem | ⊢ ( 𝜑  →  ( ( log Γ ‘ 𝐴 )  ∈  ℂ  ∧  seq 1 (  +  ,  𝐺 )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) |