Metamath Proof Explorer


Theorem lgamcvg

Description: The series G converges to log_G ( A ) + log ( A ) . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) )
lgamcvg.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
Assertion lgamcvg ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 lgamcvg.g 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) )
2 lgamcvg.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
3 eqid { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑦 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑦 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑦 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑦 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) }
4 3 2 1 lgamcvglem ( 𝜑 → ( ( log Γ ‘ 𝐴 ) ∈ ℂ ∧ seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) )
5 4 simprd ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) )