Step |
Hyp |
Ref |
Expression |
1 |
|
lgamcvg.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
2 |
|
lgamcvg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
eqid |
⊢ { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑦 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑦 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑦 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑦 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
4 |
3 2 1
|
lgamcvglem |
⊢ ( 𝜑 → ( ( log Γ ‘ 𝐴 ) ∈ ℂ ∧ seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) |