Metamath Proof Explorer


Theorem lgamcvg

Description: The series G converges to log_G ( A ) + log ( A ) . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g G = m A log m + 1 m log A m + 1
lgamcvg.a φ A
Assertion lgamcvg φ seq 1 + G log Γ A + log A

Proof

Step Hyp Ref Expression
1 lgamcvg.g G = m A log m + 1 m log A m + 1
2 lgamcvg.a φ A
3 eqid x | x y k 0 1 y x + k = x | x y k 0 1 y x + k
4 3 2 1 lgamcvglem φ log Γ A seq 1 + G log Γ A + log A
5 4 simprd φ seq 1 + G log Γ A + log A