Metamath Proof Explorer


Theorem lgamcvg2

Description: The series G converges to log_G ( A + 1 ) . (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g G = m A log m + 1 m log A m + 1
lgamcvg.a φ A
Assertion lgamcvg2 φ seq 1 + G log Γ A + 1

Proof

Step Hyp Ref Expression
1 lgamcvg.g G = m A log m + 1 m log A m + 1
2 lgamcvg.a φ A
3 nnuz = 1
4 1zzd φ 1
5 eqid m A + 1 log m + 1 m log A + 1 m + 1 = m A + 1 log m + 1 m log A + 1 m + 1
6 1nn0 1 0
7 6 a1i φ 1 0
8 2 7 dmgmaddnn0 φ A + 1
9 5 8 lgamcvg φ seq 1 + m A + 1 log m + 1 m log A + 1 m + 1 log Γ A + 1 + log A + 1
10 seqex seq 1 + G V
11 10 a1i φ seq 1 + G V
12 2 eldifad φ A
13 12 abscld φ A
14 arch A r A < r
15 13 14 syl φ r A < r
16 eqid r = r
17 simprl φ r A < r r
18 17 nnzd φ r A < r r
19 eqid −∞ 0 = −∞ 0
20 19 logcn log −∞ 0 : −∞ 0 cn
21 20 a1i φ r A < r log −∞ 0 : −∞ 0 cn
22 eqid 1 ball abs 1 = 1 ball abs 1
23 22 dvlog2lem 1 ball abs 1 −∞ 0
24 12 ad2antrr φ r A < r m r A
25 eluznn r m r m
26 25 ex r m r m
27 26 ad2antrl φ r A < r m r m
28 27 imp φ r A < r m r m
29 28 nncnd φ r A < r m r m
30 1cnd φ r A < r m r 1
31 29 30 addcld φ r A < r m r m + 1
32 28 peano2nnd φ r A < r m r m + 1
33 32 nnne0d φ r A < r m r m + 1 0
34 24 31 33 divcld φ r A < r m r A m + 1
35 34 30 addcld φ r A < r m r A m + 1 + 1
36 ax-1cn 1
37 eqid abs = abs
38 37 cnmetdval A m + 1 + 1 1 A m + 1 + 1 abs 1 = A m + 1 + 1 - 1
39 35 36 38 sylancl φ r A < r m r A m + 1 + 1 abs 1 = A m + 1 + 1 - 1
40 34 30 pncand φ r A < r m r A m + 1 + 1 - 1 = A m + 1
41 40 fveq2d φ r A < r m r A m + 1 + 1 - 1 = A m + 1
42 24 31 33 absdivd φ r A < r m r A m + 1 = A m + 1
43 32 nnred φ r A < r m r m + 1
44 32 nnrpd φ r A < r m r m + 1 +
45 44 rpge0d φ r A < r m r 0 m + 1
46 43 45 absidd φ r A < r m r m + 1 = m + 1
47 46 oveq2d φ r A < r m r A m + 1 = A m + 1
48 42 47 eqtrd φ r A < r m r A m + 1 = A m + 1
49 39 41 48 3eqtrd φ r A < r m r A m + 1 + 1 abs 1 = A m + 1
50 13 ad2antrr φ r A < r m r A
51 17 adantr φ r A < r m r r
52 51 nnred φ r A < r m r r
53 simplrr φ r A < r m r A < r
54 eluzle m r r m
55 54 adantl φ r A < r m r r m
56 nnleltp1 r m r m r < m + 1
57 51 28 56 syl2anc φ r A < r m r r m r < m + 1
58 55 57 mpbid φ r A < r m r r < m + 1
59 50 52 43 53 58 lttrd φ r A < r m r A < m + 1
60 31 mulid1d φ r A < r m r m + 1 1 = m + 1
61 59 60 breqtrrd φ r A < r m r A < m + 1 1
62 1red φ r A < r m r 1
63 50 62 44 ltdivmuld φ r A < r m r A m + 1 < 1 A < m + 1 1
64 61 63 mpbird φ r A < r m r A m + 1 < 1
65 49 64 eqbrtrd φ r A < r m r A m + 1 + 1 abs 1 < 1
66 cnxmet abs ∞Met
67 66 a1i φ r A < r m r abs ∞Met
68 1rp 1 +
69 rpxr 1 + 1 *
70 68 69 mp1i φ r A < r m r 1 *
71 elbl3 abs ∞Met 1 * 1 A m + 1 + 1 A m + 1 + 1 1 ball abs 1 A m + 1 + 1 abs 1 < 1
72 67 70 30 35 71 syl22anc φ r A < r m r A m + 1 + 1 1 ball abs 1 A m + 1 + 1 abs 1 < 1
73 65 72 mpbird φ r A < r m r A m + 1 + 1 1 ball abs 1
74 23 73 sselid φ r A < r m r A m + 1 + 1 −∞ 0
75 74 fmpttd φ r A < r m r A m + 1 + 1 : r −∞ 0
76 27 ssrdv φ r A < r r
77 76 resmptd φ r A < r m A m + 1 + 1 r = m r A m + 1 + 1
78 nnex V
79 78 mptex m A m + 1 V
80 79 a1i φ m A m + 1 V
81 oveq1 m = n m + 1 = n + 1
82 81 oveq2d m = n A m + 1 = A n + 1
83 eqid m A m + 1 = m A m + 1
84 ovex A n + 1 V
85 82 83 84 fvmpt n m A m + 1 n = A n + 1
86 85 adantl φ n m A m + 1 n = A n + 1
87 3 4 12 4 80 86 divcnvshft φ m A m + 1 0
88 1cnd φ 1
89 78 mptex m A m + 1 + 1 V
90 89 a1i φ m A m + 1 + 1 V
91 12 adantr φ n A
92 simpr φ n n
93 92 nncnd φ n n
94 1cnd φ n 1
95 93 94 addcld φ n n + 1
96 92 peano2nnd φ n n + 1
97 96 nnne0d φ n n + 1 0
98 91 95 97 divcld φ n A n + 1
99 86 98 eqeltrd φ n m A m + 1 n
100 82 oveq1d m = n A m + 1 + 1 = A n + 1 + 1
101 eqid m A m + 1 + 1 = m A m + 1 + 1
102 ovex A n + 1 + 1 V
103 100 101 102 fvmpt n m A m + 1 + 1 n = A n + 1 + 1
104 103 adantl φ n m A m + 1 + 1 n = A n + 1 + 1
105 86 oveq1d φ n m A m + 1 n + 1 = A n + 1 + 1
106 104 105 eqtr4d φ n m A m + 1 + 1 n = m A m + 1 n + 1
107 3 4 87 88 90 99 106 climaddc1 φ m A m + 1 + 1 0 + 1
108 0p1e1 0 + 1 = 1
109 107 108 breqtrdi φ m A m + 1 + 1 1
110 109 adantr φ r A < r m A m + 1 + 1 1
111 climres r m A m + 1 + 1 V m A m + 1 + 1 r 1 m A m + 1 + 1 1
112 18 89 111 sylancl φ r A < r m A m + 1 + 1 r 1 m A m + 1 + 1 1
113 110 112 mpbird φ r A < r m A m + 1 + 1 r 1
114 77 113 eqbrtrrd φ r A < r m r A m + 1 + 1 1
115 68 a1i 1 1 +
116 19 ellogdm 1 −∞ 0 1 1 1 +
117 36 115 116 mpbir2an 1 −∞ 0
118 117 a1i φ r A < r 1 −∞ 0
119 16 18 21 75 114 118 climcncf φ r A < r log −∞ 0 m r A m + 1 + 1 log −∞ 0 1
120 logf1o log : 0 1-1 onto ran log
121 f1of log : 0 1-1 onto ran log log : 0 ran log
122 120 121 mp1i φ r A < r log : 0 ran log
123 19 logdmss −∞ 0 0
124 123 74 sselid φ r A < r m r A m + 1 + 1 0
125 122 124 cofmpt φ r A < r log m r A m + 1 + 1 = m r log A m + 1 + 1
126 frn m r A m + 1 + 1 : r −∞ 0 ran m r A m + 1 + 1 −∞ 0
127 cores ran m r A m + 1 + 1 −∞ 0 log −∞ 0 m r A m + 1 + 1 = log m r A m + 1 + 1
128 75 126 127 3syl φ r A < r log −∞ 0 m r A m + 1 + 1 = log m r A m + 1 + 1
129 76 resmptd φ r A < r m log A m + 1 + 1 r = m r log A m + 1 + 1
130 125 128 129 3eqtr4d φ r A < r log −∞ 0 m r A m + 1 + 1 = m log A m + 1 + 1 r
131 fvres 1 −∞ 0 log −∞ 0 1 = log 1
132 117 131 mp1i φ r A < r log −∞ 0 1 = log 1
133 log1 log 1 = 0
134 132 133 eqtrdi φ r A < r log −∞ 0 1 = 0
135 119 130 134 3brtr3d φ r A < r m log A m + 1 + 1 r 0
136 78 mptex m log A m + 1 + 1 V
137 climres r m log A m + 1 + 1 V m log A m + 1 + 1 r 0 m log A m + 1 + 1 0
138 18 136 137 sylancl φ r A < r m log A m + 1 + 1 r 0 m log A m + 1 + 1 0
139 135 138 mpbid φ r A < r m log A m + 1 + 1 0
140 15 139 rexlimddv φ m log A m + 1 + 1 0
141 12 88 addcld φ A + 1
142 8 dmgmn0 φ A + 1 0
143 141 142 logcld φ log A + 1
144 78 mptex m log A + 1 log A m + 1 + 1 V
145 144 a1i φ m log A + 1 log A m + 1 + 1 V
146 82 fvoveq1d m = n log A m + 1 + 1 = log A n + 1 + 1
147 eqid m log A m + 1 + 1 = m log A m + 1 + 1
148 fvex log A n + 1 + 1 V
149 146 147 148 fvmpt n m log A m + 1 + 1 n = log A n + 1 + 1
150 149 adantl φ n m log A m + 1 + 1 n = log A n + 1 + 1
151 98 94 addcld φ n A n + 1 + 1
152 2 adantr φ n A
153 152 96 dmgmdivn0 φ n A n + 1 + 1 0
154 151 153 logcld φ n log A n + 1 + 1
155 150 154 eqeltrd φ n m log A m + 1 + 1 n
156 146 oveq2d m = n log A + 1 log A m + 1 + 1 = log A + 1 log A n + 1 + 1
157 eqid m log A + 1 log A m + 1 + 1 = m log A + 1 log A m + 1 + 1
158 ovex log A + 1 log A n + 1 + 1 V
159 156 157 158 fvmpt n m log A + 1 log A m + 1 + 1 n = log A + 1 log A n + 1 + 1
160 159 adantl φ n m log A + 1 log A m + 1 + 1 n = log A + 1 log A n + 1 + 1
161 150 oveq2d φ n log A + 1 m log A m + 1 + 1 n = log A + 1 log A n + 1 + 1
162 160 161 eqtr4d φ n m log A + 1 log A m + 1 + 1 n = log A + 1 m log A m + 1 + 1 n
163 3 4 140 143 145 155 162 climsubc2 φ m log A + 1 log A m + 1 + 1 log A + 1 0
164 143 subid1d φ log A + 1 0 = log A + 1
165 163 164 breqtrd φ m log A + 1 log A m + 1 + 1 log A + 1
166 elfznn k 1 n k
167 166 adantl φ n k 1 n k
168 oveq1 m = k m + 1 = k + 1
169 id m = k m = k
170 168 169 oveq12d m = k m + 1 m = k + 1 k
171 170 fveq2d m = k log m + 1 m = log k + 1 k
172 171 oveq2d m = k A + 1 log m + 1 m = A + 1 log k + 1 k
173 oveq2 m = k A + 1 m = A + 1 k
174 173 fvoveq1d m = k log A + 1 m + 1 = log A + 1 k + 1
175 172 174 oveq12d m = k A + 1 log m + 1 m log A + 1 m + 1 = A + 1 log k + 1 k log A + 1 k + 1
176 ovex A + 1 log k + 1 k log A + 1 k + 1 V
177 175 5 176 fvmpt k m A + 1 log m + 1 m log A + 1 m + 1 k = A + 1 log k + 1 k log A + 1 k + 1
178 167 177 syl φ n k 1 n m A + 1 log m + 1 m log A + 1 m + 1 k = A + 1 log k + 1 k log A + 1 k + 1
179 92 3 eleqtrdi φ n n 1
180 12 ad2antrr φ n k 1 n A
181 1cnd φ n k 1 n 1
182 180 181 addcld φ n k 1 n A + 1
183 167 peano2nnd φ n k 1 n k + 1
184 183 nnrpd φ n k 1 n k + 1 +
185 167 nnrpd φ n k 1 n k +
186 184 185 rpdivcld φ n k 1 n k + 1 k +
187 186 relogcld φ n k 1 n log k + 1 k
188 187 recnd φ n k 1 n log k + 1 k
189 182 188 mulcld φ n k 1 n A + 1 log k + 1 k
190 167 nncnd φ n k 1 n k
191 167 nnne0d φ n k 1 n k 0
192 182 190 191 divcld φ n k 1 n A + 1 k
193 192 181 addcld φ n k 1 n A + 1 k + 1
194 8 ad2antrr φ n k 1 n A + 1
195 194 167 dmgmdivn0 φ n k 1 n A + 1 k + 1 0
196 193 195 logcld φ n k 1 n log A + 1 k + 1
197 189 196 subcld φ n k 1 n A + 1 log k + 1 k log A + 1 k + 1
198 178 179 197 fsumser φ n k = 1 n A + 1 log k + 1 k log A + 1 k + 1 = seq 1 + m A + 1 log m + 1 m log A + 1 m + 1 n
199 fzfid φ n 1 n Fin
200 199 197 fsumcl φ n k = 1 n A + 1 log k + 1 k log A + 1 k + 1
201 198 200 eqeltrrd φ n seq 1 + m A + 1 log m + 1 m log A + 1 m + 1 n
202 143 adantr φ n log A + 1
203 202 154 subcld φ n log A + 1 log A n + 1 + 1
204 160 203 eqeltrd φ n m log A + 1 log A m + 1 + 1 n
205 180 188 mulcld φ n k 1 n A log k + 1 k
206 180 190 191 divcld φ n k 1 n A k
207 206 181 addcld φ n k 1 n A k + 1
208 2 ad2antrr φ n k 1 n A
209 208 167 dmgmdivn0 φ n k 1 n A k + 1 0
210 207 209 logcld φ n k 1 n log A k + 1
211 205 210 subcld φ n k 1 n A log k + 1 k log A k + 1
212 199 211 fsumcl φ n k = 1 n A log k + 1 k log A k + 1
213 200 212 nncand φ n k = 1 n A + 1 log k + 1 k log A + 1 k + 1 k = 1 n A + 1 log k + 1 k log A + 1 k + 1 k = 1 n A log k + 1 k log A k + 1 = k = 1 n A log k + 1 k log A k + 1
214 189 196 205 210 sub4d φ n k 1 n A + 1 log k + 1 k - log A + 1 k + 1 - A log k + 1 k log A k + 1 = A + 1 log k + 1 k - A log k + 1 k - log A + 1 k + 1 log A k + 1
215 180 181 pncan2d φ n k 1 n A + 1 - A = 1
216 215 oveq1d φ n k 1 n A + 1 - A log k + 1 k = 1 log k + 1 k
217 182 180 188 subdird φ n k 1 n A + 1 - A log k + 1 k = A + 1 log k + 1 k A log k + 1 k
218 188 mulid2d φ n k 1 n 1 log k + 1 k = log k + 1 k
219 216 217 218 3eqtr3d φ n k 1 n A + 1 log k + 1 k A log k + 1 k = log k + 1 k
220 219 oveq1d φ n k 1 n A + 1 log k + 1 k - A log k + 1 k - log A + 1 k + 1 log A k + 1 = log k + 1 k log A + 1 k + 1 log A k + 1
221 188 196 210 subsubd φ n k 1 n log k + 1 k log A + 1 k + 1 log A k + 1 = log k + 1 k - log A + 1 k + 1 + log A k + 1
222 188 196 subcld φ n k 1 n log k + 1 k log A + 1 k + 1
223 222 210 addcomd φ n k 1 n log k + 1 k - log A + 1 k + 1 + log A k + 1 = log A k + 1 + log k + 1 k - log A + 1 k + 1
224 210 196 188 subsub2d φ n k 1 n log A k + 1 log A + 1 k + 1 log k + 1 k = log A k + 1 + log k + 1 k - log A + 1 k + 1
225 183 nncnd φ n k 1 n k + 1
226 180 225 addcld φ n k 1 n A + k + 1
227 183 nnnn0d φ n k 1 n k + 1 0
228 dmgmaddn0 A k + 1 0 A + k + 1 0
229 208 227 228 syl2anc φ n k 1 n A + k + 1 0
230 226 229 logcld φ n k 1 n log A + k + 1
231 184 relogcld φ n k 1 n log k + 1
232 231 recnd φ n k 1 n log k + 1
233 185 relogcld φ n k 1 n log k
234 233 recnd φ n k 1 n log k
235 230 232 234 nnncan2d φ n k 1 n log A + k + 1 - log k - log k + 1 log k = log A + k + 1 log k + 1
236 182 190 190 191 divdird φ n k 1 n A + 1 + k k = A + 1 k + k k
237 180 190 181 add32d φ n k 1 n A + k + 1 = A + 1 + k
238 180 190 181 addassd φ n k 1 n A + k + 1 = A + k + 1
239 237 238 eqtr3d φ n k 1 n A + 1 + k = A + k + 1
240 239 oveq1d φ n k 1 n A + 1 + k k = A + k + 1 k
241 190 191 dividd φ n k 1 n k k = 1
242 241 oveq2d φ n k 1 n A + 1 k + k k = A + 1 k + 1
243 236 240 242 3eqtr3rd φ n k 1 n A + 1 k + 1 = A + k + 1 k
244 243 fveq2d φ n k 1 n log A + 1 k + 1 = log A + k + 1 k
245 logdiv2 A + k + 1 A + k + 1 0 k + log A + k + 1 k = log A + k + 1 log k
246 226 229 185 245 syl3anc φ n k 1 n log A + k + 1 k = log A + k + 1 log k
247 244 246 eqtrd φ n k 1 n log A + 1 k + 1 = log A + k + 1 log k
248 184 185 relogdivd φ n k 1 n log k + 1 k = log k + 1 log k
249 247 248 oveq12d φ n k 1 n log A + 1 k + 1 log k + 1 k = log A + k + 1 - log k - log k + 1 log k
250 183 nnne0d φ n k 1 n k + 1 0
251 180 225 225 250 divdird φ n k 1 n A + k + 1 k + 1 = A k + 1 + k + 1 k + 1
252 225 250 dividd φ n k 1 n k + 1 k + 1 = 1
253 252 oveq2d φ n k 1 n A k + 1 + k + 1 k + 1 = A k + 1 + 1
254 251 253 eqtr2d φ n k 1 n A k + 1 + 1 = A + k + 1 k + 1
255 254 fveq2d φ n k 1 n log A k + 1 + 1 = log A + k + 1 k + 1
256 logdiv2 A + k + 1 A + k + 1 0 k + 1 + log A + k + 1 k + 1 = log A + k + 1 log k + 1
257 226 229 184 256 syl3anc φ n k 1 n log A + k + 1 k + 1 = log A + k + 1 log k + 1
258 255 257 eqtrd φ n k 1 n log A k + 1 + 1 = log A + k + 1 log k + 1
259 235 249 258 3eqtr4d φ n k 1 n log A + 1 k + 1 log k + 1 k = log A k + 1 + 1
260 259 oveq2d φ n k 1 n log A k + 1 log A + 1 k + 1 log k + 1 k = log A k + 1 log A k + 1 + 1
261 224 260 eqtr3d φ n k 1 n log A k + 1 + log k + 1 k - log A + 1 k + 1 = log A k + 1 log A k + 1 + 1
262 221 223 261 3eqtrd φ n k 1 n log k + 1 k log A + 1 k + 1 log A k + 1 = log A k + 1 log A k + 1 + 1
263 214 220 262 3eqtrd φ n k 1 n A + 1 log k + 1 k - log A + 1 k + 1 - A log k + 1 k log A k + 1 = log A k + 1 log A k + 1 + 1
264 263 sumeq2dv φ n k = 1 n A + 1 log k + 1 k - log A + 1 k + 1 - A log k + 1 k log A k + 1 = k = 1 n log A k + 1 log A k + 1 + 1
265 199 197 211 fsumsub φ n k = 1 n A + 1 log k + 1 k - log A + 1 k + 1 - A log k + 1 k log A k + 1 = k = 1 n A + 1 log k + 1 k log A + 1 k + 1 k = 1 n A log k + 1 k log A k + 1
266 oveq2 x = k A x = A k
267 266 fvoveq1d x = k log A x + 1 = log A k + 1
268 oveq2 x = k + 1 A x = A k + 1
269 268 fvoveq1d x = k + 1 log A x + 1 = log A k + 1 + 1
270 oveq2 x = 1 A x = A 1
271 270 fvoveq1d x = 1 log A x + 1 = log A 1 + 1
272 oveq2 x = n + 1 A x = A n + 1
273 272 fvoveq1d x = n + 1 log A x + 1 = log A n + 1 + 1
274 92 nnzd φ n n
275 96 3 eleqtrdi φ n n + 1 1
276 12 ad2antrr φ n x 1 n + 1 A
277 elfznn x 1 n + 1 x
278 277 adantl φ n x 1 n + 1 x
279 278 nncnd φ n x 1 n + 1 x
280 278 nnne0d φ n x 1 n + 1 x 0
281 276 279 280 divcld φ n x 1 n + 1 A x
282 1cnd φ n x 1 n + 1 1
283 281 282 addcld φ n x 1 n + 1 A x + 1
284 2 ad2antrr φ n x 1 n + 1 A
285 284 278 dmgmdivn0 φ n x 1 n + 1 A x + 1 0
286 283 285 logcld φ n x 1 n + 1 log A x + 1
287 267 269 271 273 274 275 286 telfsum φ n k = 1 n log A k + 1 log A k + 1 + 1 = log A 1 + 1 log A n + 1 + 1
288 91 div1d φ n A 1 = A
289 288 fvoveq1d φ n log A 1 + 1 = log A + 1
290 289 oveq1d φ n log A 1 + 1 log A n + 1 + 1 = log A + 1 log A n + 1 + 1
291 287 290 eqtrd φ n k = 1 n log A k + 1 log A k + 1 + 1 = log A + 1 log A n + 1 + 1
292 264 265 291 3eqtr3d φ n k = 1 n A + 1 log k + 1 k log A + 1 k + 1 k = 1 n A log k + 1 k log A k + 1 = log A + 1 log A n + 1 + 1
293 292 oveq2d φ n k = 1 n A + 1 log k + 1 k log A + 1 k + 1 k = 1 n A + 1 log k + 1 k log A + 1 k + 1 k = 1 n A log k + 1 k log A k + 1 = k = 1 n A + 1 log k + 1 k log A + 1 k + 1 log A + 1 log A n + 1 + 1
294 213 293 eqtr3d φ n k = 1 n A log k + 1 k log A k + 1 = k = 1 n A + 1 log k + 1 k log A + 1 k + 1 log A + 1 log A n + 1 + 1
295 171 oveq2d m = k A log m + 1 m = A log k + 1 k
296 oveq2 m = k A m = A k
297 296 fvoveq1d m = k log A m + 1 = log A k + 1
298 295 297 oveq12d m = k A log m + 1 m log A m + 1 = A log k + 1 k log A k + 1
299 ovex A log k + 1 k log A k + 1 V
300 298 1 299 fvmpt k G k = A log k + 1 k log A k + 1
301 167 300 syl φ n k 1 n G k = A log k + 1 k log A k + 1
302 301 179 211 fsumser φ n k = 1 n A log k + 1 k log A k + 1 = seq 1 + G n
303 160 eqcomd φ n log A + 1 log A n + 1 + 1 = m log A + 1 log A m + 1 + 1 n
304 198 303 oveq12d φ n k = 1 n A + 1 log k + 1 k log A + 1 k + 1 log A + 1 log A n + 1 + 1 = seq 1 + m A + 1 log m + 1 m log A + 1 m + 1 n m log A + 1 log A m + 1 + 1 n
305 294 302 304 3eqtr3d φ n seq 1 + G n = seq 1 + m A + 1 log m + 1 m log A + 1 m + 1 n m log A + 1 log A m + 1 + 1 n
306 3 4 9 11 165 201 204 305 climsub φ seq 1 + G log Γ A + 1 + log A + 1 - log A + 1
307 lgamcl A + 1 log Γ A + 1
308 8 307 syl φ log Γ A + 1
309 308 143 pncand φ log Γ A + 1 + log A + 1 - log A + 1 = log Γ A + 1
310 306 309 breqtrd φ seq 1 + G log Γ A + 1