Metamath Proof Explorer


Theorem elbl3

Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007)

Ref Expression
Assertion elbl3 D∞MetXR*PXAXAPballDRADP<R

Proof

Step Hyp Ref Expression
1 elbl2 D∞MetXR*PXAXAPballDRPDA<R
2 xmetsym D∞MetXPXAXPDA=ADP
3 2 3expb D∞MetXPXAXPDA=ADP
4 3 adantlr D∞MetXR*PXAXPDA=ADP
5 4 breq1d D∞MetXR*PXAXPDA<RADP<R
6 1 5 bitrd D∞MetXR*PXAXAPballDRADP<R