Metamath Proof Explorer


Theorem blcomps

Description: Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion blcomps DPsMetXR*PXAXAPballDRPAballDR

Proof

Step Hyp Ref Expression
1 elbl2ps DPsMetXR*PXAXAPballDRPDA<R
2 elbl3ps DPsMetXR*AXPXPAballDRPDA<R
3 2 ancom2s DPsMetXR*PXAXPAballDRPDA<R
4 1 3 bitr4d DPsMetXR*PXAXAPballDRPAballDR