Metamath Proof Explorer


Theorem elbl2

Description: Membership in a ball. (Contributed by NM, 9-Mar-2007)

Ref Expression
Assertion elbl2 D∞MetXR*PXAXAPballDRPDA<R

Proof

Step Hyp Ref Expression
1 simprr D∞MetXR*PXAXAX
2 elbl D∞MetXPXR*APballDRAXPDA<R
3 2 3expa D∞MetXPXR*APballDRAXPDA<R
4 3 an32s D∞MetXR*PXAPballDRAXPDA<R
5 4 adantrr D∞MetXR*PXAXAPballDRAXPDA<R
6 1 5 mpbirand D∞MetXR*PXAXAPballDRPDA<R