Metamath Proof Explorer


Theorem gamcvg

Description: The pointwise exponential of the series G converges to _G ( A ) x. A . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g G = m A log m + 1 m log A m + 1
lgamcvg.a φ A
Assertion gamcvg φ exp seq 1 + G Γ A A

Proof

Step Hyp Ref Expression
1 lgamcvg.g G = m A log m + 1 m log A m + 1
2 lgamcvg.a φ A
3 nnuz = 1
4 1zzd φ 1
5 efcn exp : cn
6 5 a1i φ exp : cn
7 2 eldifad φ A
8 7 adantr φ m A
9 simpr φ m m
10 9 peano2nnd φ m m + 1
11 10 nnrpd φ m m + 1 +
12 9 nnrpd φ m m +
13 11 12 rpdivcld φ m m + 1 m +
14 13 relogcld φ m log m + 1 m
15 14 recnd φ m log m + 1 m
16 8 15 mulcld φ m A log m + 1 m
17 9 nncnd φ m m
18 9 nnne0d φ m m 0
19 8 17 18 divcld φ m A m
20 1cnd φ m 1
21 19 20 addcld φ m A m + 1
22 2 adantr φ m A
23 22 9 dmgmdivn0 φ m A m + 1 0
24 21 23 logcld φ m log A m + 1
25 16 24 subcld φ m A log m + 1 m log A m + 1
26 25 1 fmptd φ G :
27 26 ffvelrnda φ n G n
28 3 4 27 serf φ seq 1 + G :
29 1 2 lgamcvg φ seq 1 + G log Γ A + log A
30 lgamcl A log Γ A
31 2 30 syl φ log Γ A
32 2 dmgmn0 φ A 0
33 7 32 logcld φ log A
34 31 33 addcld φ log Γ A + log A
35 3 4 6 28 29 34 climcncf φ exp seq 1 + G e log Γ A + log A
36 efadd log Γ A log A e log Γ A + log A = e log Γ A e log A
37 31 33 36 syl2anc φ e log Γ A + log A = e log Γ A e log A
38 eflgam A e log Γ A = Γ A
39 2 38 syl φ e log Γ A = Γ A
40 eflog A A 0 e log A = A
41 7 32 40 syl2anc φ e log A = A
42 39 41 oveq12d φ e log Γ A e log A = Γ A A
43 37 42 eqtrd φ e log Γ A + log A = Γ A A
44 35 43 breqtrd φ exp seq 1 + G Γ A A