Metamath Proof Explorer


Theorem lgamp1

Description: The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion lgamp1 AlogΓA+1=logΓA+logA

Proof

Step Hyp Ref Expression
1 eqid mAlogm+1mlogAm+1=mAlogm+1mlogAm+1
2 id AA
3 1 2 lgamcvg2 Aseq1+mAlogm+1mlogAm+1logΓA+1
4 1 2 lgamcvg Aseq1+mAlogm+1mlogAm+1logΓA+logA
5 climuni seq1+mAlogm+1mlogAm+1logΓA+1seq1+mAlogm+1mlogAm+1logΓA+logAlogΓA+1=logΓA+logA
6 3 4 5 syl2anc AlogΓA+1=logΓA+logA