Metamath Proof Explorer


Theorem lgamp1

Description: The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion lgamp1 A log Γ A + 1 = log Γ A + log A

Proof

Step Hyp Ref Expression
1 eqid m A log m + 1 m log A m + 1 = m A log m + 1 m log A m + 1
2 id A A
3 1 2 lgamcvg2 A seq 1 + m A log m + 1 m log A m + 1 log Γ A + 1
4 1 2 lgamcvg A seq 1 + m A log m + 1 m log A m + 1 log Γ A + log A
5 climuni seq 1 + m A log m + 1 m log A m + 1 log Γ A + 1 seq 1 + m A log m + 1 m log A m + 1 log Γ A + log A log Γ A + 1 = log Γ A + log A
6 3 4 5 syl2anc A log Γ A + 1 = log Γ A + log A