Metamath Proof Explorer


Theorem gamp1

Description: The functional equation of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamp1 AΓA+1=ΓAA

Proof

Step Hyp Ref Expression
1 lgamp1 AlogΓA+1=logΓA+logA
2 1 fveq2d AelogΓA+1=elogΓA+logA
3 lgamcl AlogΓA
4 eldifi AA
5 id AA
6 5 dmgmn0 AA0
7 4 6 logcld AlogA
8 efadd logΓAlogAelogΓA+logA=elogΓAelogA
9 3 7 8 syl2anc AelogΓA+logA=elogΓAelogA
10 eflog AA0elogA=A
11 4 6 10 syl2anc AelogA=A
12 11 oveq2d AelogΓAelogA=elogΓAA
13 2 9 12 3eqtrd AelogΓA+1=elogΓAA
14 1nn0 10
15 14 a1i A10
16 5 15 dmgmaddnn0 AA+1
17 eflgam A+1elogΓA+1=ΓA+1
18 16 17 syl AelogΓA+1=ΓA+1
19 eflgam AelogΓA=ΓA
20 19 oveq1d AelogΓAA=ΓAA
21 13 18 20 3eqtr3d AΓA+1=ΓAA