Metamath Proof Explorer


Theorem gamp1

Description: The functional equation of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamp1 A Γ A + 1 = Γ A A

Proof

Step Hyp Ref Expression
1 lgamp1 A log Γ A + 1 = log Γ A + log A
2 1 fveq2d A e log Γ A + 1 = e log Γ A + log A
3 lgamcl A log Γ A
4 eldifi A A
5 id A A
6 5 dmgmn0 A A 0
7 4 6 logcld A log A
8 efadd log Γ A log A e log Γ A + log A = e log Γ A e log A
9 3 7 8 syl2anc A e log Γ A + log A = e log Γ A e log A
10 eflog A A 0 e log A = A
11 4 6 10 syl2anc A e log A = A
12 11 oveq2d A e log Γ A e log A = e log Γ A A
13 2 9 12 3eqtrd A e log Γ A + 1 = e log Γ A A
14 1nn0 1 0
15 14 a1i A 1 0
16 5 15 dmgmaddnn0 A A + 1
17 eflgam A + 1 e log Γ A + 1 = Γ A + 1
18 16 17 syl A e log Γ A + 1 = Γ A + 1
19 eflgam A e log Γ A = Γ A
20 19 oveq1d A e log Γ A A = Γ A A
21 13 18 20 3eqtr3d A Γ A + 1 = Γ A A