Step |
Hyp |
Ref |
Expression |
1 |
|
gamcvg2.f |
|
2 |
|
gamcvg2.a |
|
3 |
|
gamcvg2.g |
|
4 |
|
addcl |
|
5 |
4
|
adantl |
|
6 |
|
simpll |
|
7 |
|
elfznn |
|
8 |
7
|
adantl |
|
9 |
|
oveq1 |
|
10 |
|
id |
|
11 |
9 10
|
oveq12d |
|
12 |
11
|
fveq2d |
|
13 |
12
|
oveq2d |
|
14 |
|
oveq2 |
|
15 |
14
|
oveq1d |
|
16 |
15
|
fveq2d |
|
17 |
13 16
|
oveq12d |
|
18 |
|
ovex |
|
19 |
17 3 18
|
fvmpt |
|
20 |
19
|
adantl |
|
21 |
2
|
adantr |
|
22 |
21
|
eldifad |
|
23 |
|
simpr |
|
24 |
23
|
peano2nnd |
|
25 |
24
|
nnrpd |
|
26 |
23
|
nnrpd |
|
27 |
25 26
|
rpdivcld |
|
28 |
27
|
relogcld |
|
29 |
28
|
recnd |
|
30 |
22 29
|
mulcld |
|
31 |
23
|
nncnd |
|
32 |
23
|
nnne0d |
|
33 |
22 31 32
|
divcld |
|
34 |
|
1cnd |
|
35 |
33 34
|
addcld |
|
36 |
21 23
|
dmgmdivn0 |
|
37 |
35 36
|
logcld |
|
38 |
30 37
|
subcld |
|
39 |
20 38
|
eqeltrd |
|
40 |
6 8 39
|
syl2anc |
|
41 |
|
simpr |
|
42 |
|
nnuz |
|
43 |
41 42
|
eleqtrdi |
|
44 |
|
efadd |
|
45 |
44
|
adantl |
|
46 |
|
efsub |
|
47 |
30 37 46
|
syl2anc |
|
48 |
31 34
|
addcld |
|
49 |
48 31 32
|
divcld |
|
50 |
24
|
nnne0d |
|
51 |
48 31 50 32
|
divne0d |
|
52 |
49 51 22
|
cxpefd |
|
53 |
52
|
eqcomd |
|
54 |
|
eflog |
|
55 |
35 36 54
|
syl2anc |
|
56 |
53 55
|
oveq12d |
|
57 |
47 56
|
eqtrd |
|
58 |
20
|
fveq2d |
|
59 |
11
|
oveq1d |
|
60 |
59 15
|
oveq12d |
|
61 |
|
ovex |
|
62 |
60 1 61
|
fvmpt |
|
63 |
62
|
adantl |
|
64 |
57 58 63
|
3eqtr4d |
|
65 |
6 8 64
|
syl2anc |
|
66 |
5 40 43 45 65
|
seqhomo |
|
67 |
66
|
mpteq2dva |
|
68 |
|
eff |
|
69 |
68
|
a1i |
|
70 |
|
1z |
|
71 |
70
|
a1i |
|
72 |
42 71 39
|
serf |
|
73 |
|
fcompt |
|
74 |
69 72 73
|
syl2anc |
|
75 |
|
seqfn |
|
76 |
70 75
|
mp1i |
|
77 |
42
|
fneq2i |
|
78 |
76 77
|
sylibr |
|
79 |
|
dffn5 |
|
80 |
78 79
|
sylib |
|
81 |
67 74 80
|
3eqtr4d |
|