| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gamcvg2.f |
|
| 2 |
|
gamcvg2.a |
|
| 3 |
|
gamcvg2.g |
|
| 4 |
|
addcl |
|
| 5 |
4
|
adantl |
|
| 6 |
|
simpll |
|
| 7 |
|
elfznn |
|
| 8 |
7
|
adantl |
|
| 9 |
|
oveq1 |
|
| 10 |
|
id |
|
| 11 |
9 10
|
oveq12d |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
15
|
fveq2d |
|
| 17 |
13 16
|
oveq12d |
|
| 18 |
|
ovex |
|
| 19 |
17 3 18
|
fvmpt |
|
| 20 |
19
|
adantl |
|
| 21 |
2
|
adantr |
|
| 22 |
21
|
eldifad |
|
| 23 |
|
simpr |
|
| 24 |
23
|
peano2nnd |
|
| 25 |
24
|
nnrpd |
|
| 26 |
23
|
nnrpd |
|
| 27 |
25 26
|
rpdivcld |
|
| 28 |
27
|
relogcld |
|
| 29 |
28
|
recnd |
|
| 30 |
22 29
|
mulcld |
|
| 31 |
23
|
nncnd |
|
| 32 |
23
|
nnne0d |
|
| 33 |
22 31 32
|
divcld |
|
| 34 |
|
1cnd |
|
| 35 |
33 34
|
addcld |
|
| 36 |
21 23
|
dmgmdivn0 |
|
| 37 |
35 36
|
logcld |
|
| 38 |
30 37
|
subcld |
|
| 39 |
20 38
|
eqeltrd |
|
| 40 |
6 8 39
|
syl2anc |
|
| 41 |
|
simpr |
|
| 42 |
|
nnuz |
|
| 43 |
41 42
|
eleqtrdi |
|
| 44 |
|
efadd |
|
| 45 |
44
|
adantl |
|
| 46 |
|
efsub |
|
| 47 |
30 37 46
|
syl2anc |
|
| 48 |
31 34
|
addcld |
|
| 49 |
48 31 32
|
divcld |
|
| 50 |
24
|
nnne0d |
|
| 51 |
48 31 50 32
|
divne0d |
|
| 52 |
49 51 22
|
cxpefd |
|
| 53 |
52
|
eqcomd |
|
| 54 |
|
eflog |
|
| 55 |
35 36 54
|
syl2anc |
|
| 56 |
53 55
|
oveq12d |
|
| 57 |
47 56
|
eqtrd |
|
| 58 |
20
|
fveq2d |
|
| 59 |
11
|
oveq1d |
|
| 60 |
59 15
|
oveq12d |
|
| 61 |
|
ovex |
|
| 62 |
60 1 61
|
fvmpt |
|
| 63 |
62
|
adantl |
|
| 64 |
57 58 63
|
3eqtr4d |
|
| 65 |
6 8 64
|
syl2anc |
|
| 66 |
5 40 43 45 65
|
seqhomo |
|
| 67 |
66
|
mpteq2dva |
|
| 68 |
|
eff |
|
| 69 |
68
|
a1i |
|
| 70 |
|
1z |
|
| 71 |
70
|
a1i |
|
| 72 |
42 71 39
|
serf |
|
| 73 |
|
fcompt |
|
| 74 |
69 72 73
|
syl2anc |
|
| 75 |
|
seqfn |
|
| 76 |
70 75
|
mp1i |
|
| 77 |
42
|
fneq2i |
|
| 78 |
76 77
|
sylibr |
|
| 79 |
|
dffn5 |
|
| 80 |
78 79
|
sylib |
|
| 81 |
67 74 80
|
3eqtr4d |
|