Metamath Proof Explorer


Theorem gamcvg2lem

Description: Lemma for gamcvg2 . (Contributed by Mario Carneiro, 10-Jul-2017)

Ref Expression
Hypotheses gamcvg2.f F=mm+1mAAm+1
gamcvg2.a φA
gamcvg2.g G=mAlogm+1mlogAm+1
Assertion gamcvg2lem φexpseq1+G=seq1×F

Proof

Step Hyp Ref Expression
1 gamcvg2.f F=mm+1mAAm+1
2 gamcvg2.a φA
3 gamcvg2.g G=mAlogm+1mlogAm+1
4 addcl nxn+x
5 4 adantl φknxn+x
6 simpll φkn1kφ
7 elfznn n1kn
8 7 adantl φkn1kn
9 oveq1 m=nm+1=n+1
10 id m=nm=n
11 9 10 oveq12d m=nm+1m=n+1n
12 11 fveq2d m=nlogm+1m=logn+1n
13 12 oveq2d m=nAlogm+1m=Alogn+1n
14 oveq2 m=nAm=An
15 14 oveq1d m=nAm+1=An+1
16 15 fveq2d m=nlogAm+1=logAn+1
17 13 16 oveq12d m=nAlogm+1mlogAm+1=Alogn+1nlogAn+1
18 ovex Alogn+1nlogAn+1V
19 17 3 18 fvmpt nGn=Alogn+1nlogAn+1
20 19 adantl φnGn=Alogn+1nlogAn+1
21 2 adantr φnA
22 21 eldifad φnA
23 simpr φnn
24 23 peano2nnd φnn+1
25 24 nnrpd φnn+1+
26 23 nnrpd φnn+
27 25 26 rpdivcld φnn+1n+
28 27 relogcld φnlogn+1n
29 28 recnd φnlogn+1n
30 22 29 mulcld φnAlogn+1n
31 23 nncnd φnn
32 23 nnne0d φnn0
33 22 31 32 divcld φnAn
34 1cnd φn1
35 33 34 addcld φnAn+1
36 21 23 dmgmdivn0 φnAn+10
37 35 36 logcld φnlogAn+1
38 30 37 subcld φnAlogn+1nlogAn+1
39 20 38 eqeltrd φnGn
40 6 8 39 syl2anc φkn1kGn
41 simpr φkk
42 nnuz =1
43 41 42 eleqtrdi φkk1
44 efadd nxen+x=enex
45 44 adantl φknxen+x=enex
46 efsub Alogn+1nlogAn+1eAlogn+1nlogAn+1=eAlogn+1nelogAn+1
47 30 37 46 syl2anc φneAlogn+1nlogAn+1=eAlogn+1nelogAn+1
48 31 34 addcld φnn+1
49 48 31 32 divcld φnn+1n
50 24 nnne0d φnn+10
51 48 31 50 32 divne0d φnn+1n0
52 49 51 22 cxpefd φnn+1nA=eAlogn+1n
53 52 eqcomd φneAlogn+1n=n+1nA
54 eflog An+1An+10elogAn+1=An+1
55 35 36 54 syl2anc φnelogAn+1=An+1
56 53 55 oveq12d φneAlogn+1nelogAn+1=n+1nAAn+1
57 47 56 eqtrd φneAlogn+1nlogAn+1=n+1nAAn+1
58 20 fveq2d φneGn=eAlogn+1nlogAn+1
59 11 oveq1d m=nm+1mA=n+1nA
60 59 15 oveq12d m=nm+1mAAm+1=n+1nAAn+1
61 ovex n+1nAAn+1V
62 60 1 61 fvmpt nFn=n+1nAAn+1
63 62 adantl φnFn=n+1nAAn+1
64 57 58 63 3eqtr4d φneGn=Fn
65 6 8 64 syl2anc φkn1keGn=Fn
66 5 40 43 45 65 seqhomo φkeseq1+Gk=seq1×Fk
67 66 mpteq2dva φkeseq1+Gk=kseq1×Fk
68 eff exp:
69 68 a1i φexp:
70 1z 1
71 70 a1i φ1
72 42 71 39 serf φseq1+G:
73 fcompt exp:seq1+G:expseq1+G=keseq1+Gk
74 69 72 73 syl2anc φexpseq1+G=keseq1+Gk
75 seqfn 1seq1×FFn1
76 70 75 mp1i φseq1×FFn1
77 42 fneq2i seq1×FFnseq1×FFn1
78 76 77 sylibr φseq1×FFn
79 dffn5 seq1×FFnseq1×F=kseq1×Fk
80 78 79 sylib φseq1×F=kseq1×Fk
81 67 74 80 3eqtr4d φexpseq1+G=seq1×F