Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Gamma function
gamcvg2lem
Next ⟩
gamcvg2
Metamath Proof Explorer
Ascii
Unicode
Theorem
gamcvg2lem
Description:
Lemma for
gamcvg2
.
(Contributed by
Mario Carneiro
, 10-Jul-2017)
Ref
Expression
Hypotheses
gamcvg2.f
⊢
F
=
m
∈
ℕ
⟼
m
+
1
m
A
A
m
+
1
gamcvg2.a
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
gamcvg2.g
⊢
G
=
m
∈
ℕ
⟼
A
log
m
+
1
m
−
log
A
m
+
1
Assertion
gamcvg2lem
⊢
φ
→
exp
∘
seq
1
+
G
=
seq
1
×
F
Proof
Step
Hyp
Ref
Expression
1
gamcvg2.f
⊢
F
=
m
∈
ℕ
⟼
m
+
1
m
A
A
m
+
1
2
gamcvg2.a
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
3
gamcvg2.g
⊢
G
=
m
∈
ℕ
⟼
A
log
m
+
1
m
−
log
A
m
+
1
4
addcl
⊢
n
∈
ℂ
∧
x
∈
ℂ
→
n
+
x
∈
ℂ
5
4
adantl
⊢
φ
∧
k
∈
ℕ
∧
n
∈
ℂ
∧
x
∈
ℂ
→
n
+
x
∈
ℂ
6
simpll
⊢
φ
∧
k
∈
ℕ
∧
n
∈
1
…
k
→
φ
7
elfznn
⊢
n
∈
1
…
k
→
n
∈
ℕ
8
7
adantl
⊢
φ
∧
k
∈
ℕ
∧
n
∈
1
…
k
→
n
∈
ℕ
9
oveq1
⊢
m
=
n
→
m
+
1
=
n
+
1
10
id
⊢
m
=
n
→
m
=
n
11
9
10
oveq12d
⊢
m
=
n
→
m
+
1
m
=
n
+
1
n
12
11
fveq2d
⊢
m
=
n
→
log
m
+
1
m
=
log
n
+
1
n
13
12
oveq2d
⊢
m
=
n
→
A
log
m
+
1
m
=
A
log
n
+
1
n
14
oveq2
⊢
m
=
n
→
A
m
=
A
n
15
14
oveq1d
⊢
m
=
n
→
A
m
+
1
=
A
n
+
1
16
15
fveq2d
⊢
m
=
n
→
log
A
m
+
1
=
log
A
n
+
1
17
13
16
oveq12d
⊢
m
=
n
→
A
log
m
+
1
m
−
log
A
m
+
1
=
A
log
n
+
1
n
−
log
A
n
+
1
18
ovex
⊢
A
log
n
+
1
n
−
log
A
n
+
1
∈
V
19
17
3
18
fvmpt
⊢
n
∈
ℕ
→
G
n
=
A
log
n
+
1
n
−
log
A
n
+
1
20
19
adantl
⊢
φ
∧
n
∈
ℕ
→
G
n
=
A
log
n
+
1
n
−
log
A
n
+
1
21
2
adantr
⊢
φ
∧
n
∈
ℕ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
22
21
eldifad
⊢
φ
∧
n
∈
ℕ
→
A
∈
ℂ
23
simpr
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℕ
24
23
peano2nnd
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℕ
25
24
nnrpd
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℝ
+
26
23
nnrpd
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℝ
+
27
25
26
rpdivcld
⊢
φ
∧
n
∈
ℕ
→
n
+
1
n
∈
ℝ
+
28
27
relogcld
⊢
φ
∧
n
∈
ℕ
→
log
n
+
1
n
∈
ℝ
29
28
recnd
⊢
φ
∧
n
∈
ℕ
→
log
n
+
1
n
∈
ℂ
30
22
29
mulcld
⊢
φ
∧
n
∈
ℕ
→
A
log
n
+
1
n
∈
ℂ
31
23
nncnd
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℂ
32
23
nnne0d
⊢
φ
∧
n
∈
ℕ
→
n
≠
0
33
22
31
32
divcld
⊢
φ
∧
n
∈
ℕ
→
A
n
∈
ℂ
34
1cnd
⊢
φ
∧
n
∈
ℕ
→
1
∈
ℂ
35
33
34
addcld
⊢
φ
∧
n
∈
ℕ
→
A
n
+
1
∈
ℂ
36
21
23
dmgmdivn0
⊢
φ
∧
n
∈
ℕ
→
A
n
+
1
≠
0
37
35
36
logcld
⊢
φ
∧
n
∈
ℕ
→
log
A
n
+
1
∈
ℂ
38
30
37
subcld
⊢
φ
∧
n
∈
ℕ
→
A
log
n
+
1
n
−
log
A
n
+
1
∈
ℂ
39
20
38
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
G
n
∈
ℂ
40
6
8
39
syl2anc
⊢
φ
∧
k
∈
ℕ
∧
n
∈
1
…
k
→
G
n
∈
ℂ
41
simpr
⊢
φ
∧
k
∈
ℕ
→
k
∈
ℕ
42
nnuz
⊢
ℕ
=
ℤ
≥
1
43
41
42
eleqtrdi
⊢
φ
∧
k
∈
ℕ
→
k
∈
ℤ
≥
1
44
efadd
⊢
n
∈
ℂ
∧
x
∈
ℂ
→
e
n
+
x
=
e
n
e
x
45
44
adantl
⊢
φ
∧
k
∈
ℕ
∧
n
∈
ℂ
∧
x
∈
ℂ
→
e
n
+
x
=
e
n
e
x
46
efsub
⊢
A
log
n
+
1
n
∈
ℂ
∧
log
A
n
+
1
∈
ℂ
→
e
A
log
n
+
1
n
−
log
A
n
+
1
=
e
A
log
n
+
1
n
e
log
A
n
+
1
47
30
37
46
syl2anc
⊢
φ
∧
n
∈
ℕ
→
e
A
log
n
+
1
n
−
log
A
n
+
1
=
e
A
log
n
+
1
n
e
log
A
n
+
1
48
31
34
addcld
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℂ
49
48
31
32
divcld
⊢
φ
∧
n
∈
ℕ
→
n
+
1
n
∈
ℂ
50
24
nnne0d
⊢
φ
∧
n
∈
ℕ
→
n
+
1
≠
0
51
48
31
50
32
divne0d
⊢
φ
∧
n
∈
ℕ
→
n
+
1
n
≠
0
52
49
51
22
cxpefd
⊢
φ
∧
n
∈
ℕ
→
n
+
1
n
A
=
e
A
log
n
+
1
n
53
52
eqcomd
⊢
φ
∧
n
∈
ℕ
→
e
A
log
n
+
1
n
=
n
+
1
n
A
54
eflog
⊢
A
n
+
1
∈
ℂ
∧
A
n
+
1
≠
0
→
e
log
A
n
+
1
=
A
n
+
1
55
35
36
54
syl2anc
⊢
φ
∧
n
∈
ℕ
→
e
log
A
n
+
1
=
A
n
+
1
56
53
55
oveq12d
⊢
φ
∧
n
∈
ℕ
→
e
A
log
n
+
1
n
e
log
A
n
+
1
=
n
+
1
n
A
A
n
+
1
57
47
56
eqtrd
⊢
φ
∧
n
∈
ℕ
→
e
A
log
n
+
1
n
−
log
A
n
+
1
=
n
+
1
n
A
A
n
+
1
58
20
fveq2d
⊢
φ
∧
n
∈
ℕ
→
e
G
n
=
e
A
log
n
+
1
n
−
log
A
n
+
1
59
11
oveq1d
⊢
m
=
n
→
m
+
1
m
A
=
n
+
1
n
A
60
59
15
oveq12d
⊢
m
=
n
→
m
+
1
m
A
A
m
+
1
=
n
+
1
n
A
A
n
+
1
61
ovex
⊢
n
+
1
n
A
A
n
+
1
∈
V
62
60
1
61
fvmpt
⊢
n
∈
ℕ
→
F
n
=
n
+
1
n
A
A
n
+
1
63
62
adantl
⊢
φ
∧
n
∈
ℕ
→
F
n
=
n
+
1
n
A
A
n
+
1
64
57
58
63
3eqtr4d
⊢
φ
∧
n
∈
ℕ
→
e
G
n
=
F
n
65
6
8
64
syl2anc
⊢
φ
∧
k
∈
ℕ
∧
n
∈
1
…
k
→
e
G
n
=
F
n
66
5
40
43
45
65
seqhomo
⊢
φ
∧
k
∈
ℕ
→
e
seq
1
+
G
k
=
seq
1
×
F
k
67
66
mpteq2dva
⊢
φ
→
k
∈
ℕ
⟼
e
seq
1
+
G
k
=
k
∈
ℕ
⟼
seq
1
×
F
k
68
eff
⊢
exp
:
ℂ
⟶
ℂ
69
68
a1i
⊢
φ
→
exp
:
ℂ
⟶
ℂ
70
1z
⊢
1
∈
ℤ
71
70
a1i
⊢
φ
→
1
∈
ℤ
72
42
71
39
serf
⊢
φ
→
seq
1
+
G
:
ℕ
⟶
ℂ
73
fcompt
⊢
exp
:
ℂ
⟶
ℂ
∧
seq
1
+
G
:
ℕ
⟶
ℂ
→
exp
∘
seq
1
+
G
=
k
∈
ℕ
⟼
e
seq
1
+
G
k
74
69
72
73
syl2anc
⊢
φ
→
exp
∘
seq
1
+
G
=
k
∈
ℕ
⟼
e
seq
1
+
G
k
75
seqfn
⊢
1
∈
ℤ
→
seq
1
×
F
Fn
ℤ
≥
1
76
70
75
mp1i
⊢
φ
→
seq
1
×
F
Fn
ℤ
≥
1
77
42
fneq2i
⊢
seq
1
×
F
Fn
ℕ
↔
seq
1
×
F
Fn
ℤ
≥
1
78
76
77
sylibr
⊢
φ
→
seq
1
×
F
Fn
ℕ
79
dffn5
⊢
seq
1
×
F
Fn
ℕ
↔
seq
1
×
F
=
k
∈
ℕ
⟼
seq
1
×
F
k
80
78
79
sylib
⊢
φ
→
seq
1
×
F
=
k
∈
ℕ
⟼
seq
1
×
F
k
81
67
74
80
3eqtr4d
⊢
φ
→
exp
∘
seq
1
+
G
=
seq
1
×
F