Step |
Hyp |
Ref |
Expression |
1 |
|
gamcvg2.f |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) |
2 |
|
gamcvg2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
gamcvg2.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
4 |
|
addcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑛 + 𝑥 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑛 + 𝑥 ) ∈ ℂ ) |
6 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝜑 ) |
7 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
9 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
10 |
|
id |
⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑛 + 1 ) / 𝑛 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑛 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 / 𝑚 ) + 1 ) = ( ( 𝐴 / 𝑛 ) + 1 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) |
17 |
13 16
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) = ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) |
18 |
|
ovex |
⊢ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ∈ V |
19 |
17 3 18
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) |
21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
22 |
21
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
24 |
23
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
25 |
24
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
26 |
23
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
27 |
25 26
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
28 |
27
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℂ ) |
30 |
22 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℂ ) |
31 |
23
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
32 |
23
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
33 |
22 31 32
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / 𝑛 ) ∈ ℂ ) |
34 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
35 |
33 34
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 / 𝑛 ) + 1 ) ∈ ℂ ) |
36 |
21 23
|
dmgmdivn0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 / 𝑛 ) + 1 ) ≠ 0 ) |
37 |
35 36
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ∈ ℂ ) |
38 |
30 37
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
39 |
20 38
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
40 |
6 8 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
42 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
43 |
41 42
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
44 |
|
efadd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( exp ‘ ( 𝑛 + 𝑥 ) ) = ( ( exp ‘ 𝑛 ) · ( exp ‘ 𝑥 ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( exp ‘ ( 𝑛 + 𝑥 ) ) = ( ( exp ‘ 𝑛 ) · ( exp ‘ 𝑥 ) ) ) |
46 |
|
efsub |
⊢ ( ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℂ ∧ ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ∈ ℂ ) → ( exp ‘ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) = ( ( exp ‘ ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) / ( exp ‘ ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) ) |
47 |
30 37 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( exp ‘ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) = ( ( exp ‘ ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) / ( exp ‘ ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) ) |
48 |
31 34
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℂ ) |
49 |
48 31 32
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℂ ) |
50 |
24
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ≠ 0 ) |
51 |
48 31 50 32
|
divne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / 𝑛 ) ≠ 0 ) |
52 |
49 51 22
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) ) |
53 |
52
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( exp ‘ ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) = ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) ) |
54 |
|
eflog |
⊢ ( ( ( ( 𝐴 / 𝑛 ) + 1 ) ∈ ℂ ∧ ( ( 𝐴 / 𝑛 ) + 1 ) ≠ 0 ) → ( exp ‘ ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) = ( ( 𝐴 / 𝑛 ) + 1 ) ) |
55 |
35 36 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( exp ‘ ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) = ( ( 𝐴 / 𝑛 ) + 1 ) ) |
56 |
53 55
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( exp ‘ ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) / ( exp ‘ ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) = ( ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑛 ) + 1 ) ) ) |
57 |
47 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( exp ‘ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) = ( ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑛 ) + 1 ) ) ) |
58 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( exp ‘ ( 𝐺 ‘ 𝑛 ) ) = ( exp ‘ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) ) |
59 |
11
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) = ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) ) |
60 |
59 15
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) = ( ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑛 ) + 1 ) ) ) |
61 |
|
ovex |
⊢ ( ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑛 ) + 1 ) ) ∈ V |
62 |
60 1 61
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) = ( ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑛 ) + 1 ) ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( ( 𝑛 + 1 ) / 𝑛 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑛 ) + 1 ) ) ) |
64 |
57 58 63
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( exp ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
65 |
6 8 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( exp ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
66 |
5 40 43 45 65
|
seqhomo |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) |
67 |
66
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( exp ‘ ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
68 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
69 |
68
|
a1i |
⊢ ( 𝜑 → exp : ℂ ⟶ ℂ ) |
70 |
|
1z |
⊢ 1 ∈ ℤ |
71 |
70
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
72 |
42 71 39
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℂ ) |
73 |
|
fcompt |
⊢ ( ( exp : ℂ ⟶ ℂ ∧ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℂ ) → ( exp ∘ seq 1 ( + , 𝐺 ) ) = ( 𝑘 ∈ ℕ ↦ ( exp ‘ ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) ) ) ) |
74 |
69 72 73
|
syl2anc |
⊢ ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) = ( 𝑘 ∈ ℕ ↦ ( exp ‘ ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) ) ) ) |
75 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( · , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) ) |
76 |
70 75
|
mp1i |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) ) |
77 |
42
|
fneq2i |
⊢ ( seq 1 ( · , 𝐹 ) Fn ℕ ↔ seq 1 ( · , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) ) |
78 |
76 77
|
sylibr |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) Fn ℕ ) |
79 |
|
dffn5 |
⊢ ( seq 1 ( · , 𝐹 ) Fn ℕ ↔ seq 1 ( · , 𝐹 ) = ( 𝑘 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
80 |
78 79
|
sylib |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) = ( 𝑘 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
81 |
67 74 80
|
3eqtr4d |
⊢ ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) = seq 1 ( · , 𝐹 ) ) |