| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gamcvg2.f | ⊢ 𝐹  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) | 
						
							| 2 |  | gamcvg2.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | gamcvg2.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 4 |  | addcl | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑛  +  𝑥 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( 𝑛  +  𝑥 )  ∈  ℂ ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝜑 ) | 
						
							| 7 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑘 )  →  𝑛  ∈  ℕ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑚  =  𝑛  →  𝑚  =  𝑛 ) | 
						
							| 11 | 9 10 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  +  1 )  /  𝑚 )  =  ( ( 𝑛  +  1 )  /  𝑛 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  =  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐴  /  𝑚 )  =  ( 𝐴  /  𝑛 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐴  /  𝑚 )  +  1 )  =  ( ( 𝐴  /  𝑛 )  +  1 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) | 
						
							| 17 | 13 16 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 18 |  | ovex | ⊢ ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) )  ∈  V | 
						
							| 19 | 17 3 18 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐺 ‘ 𝑛 )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 22 | 21 | eldifad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 24 | 23 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 25 | 24 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 26 | 23 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ+ ) | 
						
							| 27 | 25 26 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 28 | 27 | relogcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 30 | 22 29 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 31 | 23 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 32 | 23 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ≠  0 ) | 
						
							| 33 | 22 31 32 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  /  𝑛 )  ∈  ℂ ) | 
						
							| 34 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 35 | 33 34 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  /  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 36 | 21 23 | dmgmdivn0 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  /  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 37 | 35 36 | logcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 38 | 30 37 | subcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 39 | 20 38 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 40 | 6 8 39 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 42 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 43 | 41 42 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 44 |  | efadd | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( exp ‘ ( 𝑛  +  𝑥 ) )  =  ( ( exp ‘ 𝑛 )  ·  ( exp ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( exp ‘ ( 𝑛  +  𝑥 ) )  =  ( ( exp ‘ 𝑛 )  ·  ( exp ‘ 𝑥 ) ) ) | 
						
							| 46 |  | efsub | ⊢ ( ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ∈  ℂ  ∧  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) )  ∈  ℂ )  →  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) )  =  ( ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  /  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 47 | 30 37 46 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) )  =  ( ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  /  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 48 | 31 34 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℂ ) | 
						
							| 49 | 48 31 32 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 50 | 24 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 51 | 48 31 50 32 | divne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ≠  0 ) | 
						
							| 52 | 49 51 22 | cxpefd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  =  ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) ) | 
						
							| 53 | 52 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  =  ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 ) ) | 
						
							| 54 |  | eflog | ⊢ ( ( ( ( 𝐴  /  𝑛 )  +  1 )  ∈  ℂ  ∧  ( ( 𝐴  /  𝑛 )  +  1 )  ≠  0 )  →  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) )  =  ( ( 𝐴  /  𝑛 )  +  1 ) ) | 
						
							| 55 | 35 36 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) )  =  ( ( 𝐴  /  𝑛 )  +  1 ) ) | 
						
							| 56 | 53 55 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( exp ‘ ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) )  /  ( exp ‘ ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) )  =  ( ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑛 )  +  1 ) ) ) | 
						
							| 57 | 47 56 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) )  =  ( ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑛 )  +  1 ) ) ) | 
						
							| 58 | 20 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( exp ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( exp ‘ ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 59 | 11 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  =  ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 ) ) | 
						
							| 60 | 59 15 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) )  =  ( ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑛 )  +  1 ) ) ) | 
						
							| 61 |  | ovex | ⊢ ( ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑛 )  +  1 ) )  ∈  V | 
						
							| 62 | 60 1 61 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐹 ‘ 𝑛 )  =  ( ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑛 )  +  1 ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( ( ( 𝑛  +  1 )  /  𝑛 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑛 )  +  1 ) ) ) | 
						
							| 64 | 57 58 63 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( exp ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 65 | 6 8 64 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( exp ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 66 | 5 40 43 45 65 | seqhomo | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( seq 1 (  +  ,  𝐺 ) ‘ 𝑘 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 67 | 66 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  ( exp ‘ ( seq 1 (  +  ,  𝐺 ) ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 68 |  | eff | ⊢ exp : ℂ ⟶ ℂ | 
						
							| 69 | 68 | a1i | ⊢ ( 𝜑  →  exp : ℂ ⟶ ℂ ) | 
						
							| 70 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 72 | 42 71 39 | serf | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 ) : ℕ ⟶ ℂ ) | 
						
							| 73 |  | fcompt | ⊢ ( ( exp : ℂ ⟶ ℂ  ∧  seq 1 (  +  ,  𝐺 ) : ℕ ⟶ ℂ )  →  ( exp  ∘  seq 1 (  +  ,  𝐺 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( exp ‘ ( seq 1 (  +  ,  𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 74 | 69 72 73 | syl2anc | ⊢ ( 𝜑  →  ( exp  ∘  seq 1 (  +  ,  𝐺 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( exp ‘ ( seq 1 (  +  ,  𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 75 |  | seqfn | ⊢ ( 1  ∈  ℤ  →  seq 1 (  ·  ,  𝐹 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 76 | 70 75 | mp1i | ⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐹 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 77 | 42 | fneq2i | ⊢ ( seq 1 (  ·  ,  𝐹 )  Fn  ℕ  ↔  seq 1 (  ·  ,  𝐹 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 78 | 76 77 | sylibr | ⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐹 )  Fn  ℕ ) | 
						
							| 79 |  | dffn5 | ⊢ ( seq 1 (  ·  ,  𝐹 )  Fn  ℕ  ↔  seq 1 (  ·  ,  𝐹 )  =  ( 𝑘  ∈  ℕ  ↦  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 80 | 78 79 | sylib | ⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐹 )  =  ( 𝑘  ∈  ℕ  ↦  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑘 ) ) ) | 
						
							| 81 | 67 74 80 | 3eqtr4d | ⊢ ( 𝜑  →  ( exp  ∘  seq 1 (  +  ,  𝐺 ) )  =  seq 1 (  ·  ,  𝐹 ) ) |