Metamath Proof Explorer


Theorem gamcvg2

Description: An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses gamcvg2.f 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) )
gamcvg2.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
Assertion gamcvg2 ( 𝜑 → seq 1 ( · , 𝐹 ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 gamcvg2.f 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) )
2 gamcvg2.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
3 eqid ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) )
4 1 2 3 gamcvg2lem ( 𝜑 → ( exp ∘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ) = seq 1 ( · , 𝐹 ) )
5 3 2 gamcvg ( 𝜑 → ( exp ∘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) )
6 4 5 eqbrtrrd ( 𝜑 → seq 1 ( · , 𝐹 ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) )