Step |
Hyp |
Ref |
Expression |
1 |
|
gamcvg2.f |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) |
2 |
|
gamcvg2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
4 |
1 2 3
|
gamcvg2lem |
⊢ ( 𝜑 → ( exp ∘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ) = seq 1 ( · , 𝐹 ) ) |
5 |
3 2
|
gamcvg |
⊢ ( 𝜑 → ( exp ∘ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |
6 |
4 5
|
eqbrtrrd |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |