| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gamcvg2.f | ⊢ 𝐹  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) | 
						
							| 2 |  | gamcvg2.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 4 | 1 2 3 | gamcvg2lem | ⊢ ( 𝜑  →  ( exp  ∘  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ) )  =  seq 1 (  ·  ,  𝐹 ) ) | 
						
							| 5 | 3 2 | gamcvg | ⊢ ( 𝜑  →  ( exp  ∘  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ) )  ⇝  ( ( Γ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 6 | 4 5 | eqbrtrrd | ⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐹 )  ⇝  ( ( Γ ‘ 𝐴 )  ·  𝐴 ) ) |