Metamath Proof Explorer


Theorem gamcvg2

Description: An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses gamcvg2.f
|- F = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) )
gamcvg2.a
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) )
Assertion gamcvg2
|- ( ph -> seq 1 ( x. , F ) ~~> ( ( _G ` A ) x. A ) )

Proof

Step Hyp Ref Expression
1 gamcvg2.f
 |-  F = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) )
2 gamcvg2.a
 |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) )
3 eqid
 |-  ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) )
4 1 2 3 gamcvg2lem
 |-  ( ph -> ( exp o. seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ) = seq 1 ( x. , F ) )
5 3 2 gamcvg
 |-  ( ph -> ( exp o. seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ) ~~> ( ( _G ` A ) x. A ) )
6 4 5 eqbrtrrd
 |-  ( ph -> seq 1 ( x. , F ) ~~> ( ( _G ` A ) x. A ) )