| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gamcvg2.f |  |-  F = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) | 
						
							| 2 |  | gamcvg2.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | eqid |  |-  ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 4 | 1 2 3 | gamcvg2lem |  |-  ( ph -> ( exp o. seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ) = seq 1 ( x. , F ) ) | 
						
							| 5 | 3 2 | gamcvg |  |-  ( ph -> ( exp o. seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ) ~~> ( ( _G ` A ) x. A ) ) | 
						
							| 6 | 4 5 | eqbrtrrd |  |-  ( ph -> seq 1 ( x. , F ) ~~> ( ( _G ` A ) x. A ) ) |