| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gamcvg2.f |
|- F = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) |
| 2 |
|
gamcvg2.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 3 |
|
eqid |
|- ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
| 4 |
1 2 3
|
gamcvg2lem |
|- ( ph -> ( exp o. seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ) = seq 1 ( x. , F ) ) |
| 5 |
3 2
|
gamcvg |
|- ( ph -> ( exp o. seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ) ~~> ( ( _G ` A ) x. A ) ) |
| 6 |
4 5
|
eqbrtrrd |
|- ( ph -> seq 1 ( x. , F ) ~~> ( ( _G ` A ) x. A ) ) |