Metamath Proof Explorer


Theorem gamcvg2

Description: An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses gamcvg2.f F=mm+1mAAm+1
gamcvg2.a φA
Assertion gamcvg2 φseq1×FΓAA

Proof

Step Hyp Ref Expression
1 gamcvg2.f F=mm+1mAAm+1
2 gamcvg2.a φA
3 eqid mAlogm+1mlogAm+1=mAlogm+1mlogAm+1
4 1 2 3 gamcvg2lem φexpseq1+mAlogm+1mlogAm+1=seq1×F
5 3 2 gamcvg φexpseq1+mAlogm+1mlogAm+1ΓAA
6 4 5 eqbrtrrd φseq1×FΓAA