Metamath Proof Explorer


Theorem regamcl

Description: The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion regamcl A Γ A

Proof

Step Hyp Ref Expression
1 eldifi A A
2 1 recnd A A
3 eldifn A ¬ A
4 2 3 eldifd A A
5 gamcl A Γ A
6 4 5 syl A Γ A
7 4 dmgmn0 A A 0
8 6 2 7 divcan4d A Γ A A A = Γ A
9 nnuz = 1
10 1zzd A 1
11 eqid m m + 1 m A A m + 1 = m m + 1 m A A m + 1
12 11 4 gamcvg2 A seq 1 × m m + 1 m A A m + 1 Γ A A
13 simpr A m m
14 13 peano2nnd A m m + 1
15 14 nnrpd A m m + 1 +
16 13 nnrpd A m m +
17 15 16 rpdivcld A m m + 1 m +
18 17 rpred A m m + 1 m
19 17 rpge0d A m 0 m + 1 m
20 1 adantr A m A
21 18 19 20 recxpcld A m m + 1 m A
22 20 13 nndivred A m A m
23 1red A m 1
24 22 23 readdcld A m A m + 1
25 4 adantr A m A
26 25 13 dmgmdivn0 A m A m + 1 0
27 21 24 26 redivcld A m m + 1 m A A m + 1
28 27 fmpttd A m m + 1 m A A m + 1 :
29 28 ffvelrnda A n m m + 1 m A A m + 1 n
30 remulcl n x n x
31 30 adantl A n x n x
32 9 10 29 31 seqf A seq 1 × m m + 1 m A A m + 1 :
33 32 ffvelrnda A n seq 1 × m m + 1 m A A m + 1 n
34 9 10 12 33 climrecl A Γ A A
35 34 1 7 redivcld A Γ A A A
36 8 35 eqeltrrd A Γ A