Metamath Proof Explorer


Theorem regamcl

Description: The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion regamcl AΓA

Proof

Step Hyp Ref Expression
1 eldifi AA
2 1 recnd AA
3 eldifn A¬A
4 2 3 eldifd AA
5 gamcl AΓA
6 4 5 syl AΓA
7 4 dmgmn0 AA0
8 6 2 7 divcan4d AΓAAA=ΓA
9 nnuz =1
10 1zzd A1
11 eqid mm+1mAAm+1=mm+1mAAm+1
12 11 4 gamcvg2 Aseq1×mm+1mAAm+1ΓAA
13 simpr Amm
14 13 peano2nnd Amm+1
15 14 nnrpd Amm+1+
16 13 nnrpd Amm+
17 15 16 rpdivcld Amm+1m+
18 17 rpred Amm+1m
19 17 rpge0d Am0m+1m
20 1 adantr AmA
21 18 19 20 recxpcld Amm+1mA
22 20 13 nndivred AmAm
23 1red Am1
24 22 23 readdcld AmAm+1
25 4 adantr AmA
26 25 13 dmgmdivn0 AmAm+10
27 21 24 26 redivcld Amm+1mAAm+1
28 27 fmpttd Amm+1mAAm+1:
29 28 ffvelcdmda Anmm+1mAAm+1n
30 remulcl nxnx
31 30 adantl Anxnx
32 9 10 29 31 seqf Aseq1×mm+1mAAm+1:
33 32 ffvelcdmda Anseq1×mm+1mAAm+1n
34 9 10 12 33 climrecl AΓAA
35 34 1 7 redivcld AΓAAA
36 8 35 eqeltrrd AΓA