| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | recnd | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | eldifn | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ¬  𝐴  ∈  ( ℤ  ∖  ℕ ) ) | 
						
							| 4 | 2 3 | eldifd | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 5 |  | gamcl | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ( Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 | 4 | dmgmn0 | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  𝐴  ≠  0 ) | 
						
							| 8 | 6 2 7 | divcan4d | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ( ( ( Γ ‘ 𝐴 )  ·  𝐴 )  /  𝐴 )  =  ( Γ ‘ 𝐴 ) ) | 
						
							| 9 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 10 |  | 1zzd | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  1  ∈  ℤ ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) | 
						
							| 12 | 11 4 | gamcvg2 | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) )  ⇝  ( ( Γ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 14 | 13 | peano2nnd | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 15 | 14 | nnrpd | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 16 | 13 | nnrpd | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 17 | 15 16 | rpdivcld | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 18 | 17 | rpred | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 19 | 17 | rpge0d | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  0  ≤  ( ( 𝑚  +  1 )  /  𝑚 ) ) | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 21 | 18 19 20 | recxpcld | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  ∈  ℝ ) | 
						
							| 22 | 20 13 | nndivred | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝐴  /  𝑚 )  ∈  ℝ ) | 
						
							| 23 |  | 1red | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 24 | 22 23 | readdcld | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  /  𝑚 )  +  1 )  ∈  ℝ ) | 
						
							| 25 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 26 | 25 13 | dmgmdivn0 | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  /  𝑚 )  +  1 )  ≠  0 ) | 
						
							| 27 | 21 24 26 | redivcld | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑚  ∈  ℕ )  →  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) )  ∈  ℝ ) | 
						
							| 28 | 27 | fmpttd | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 30 |  | remulcl | ⊢ ( ( 𝑛  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ·  𝑥 )  ∈  ℝ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  ( 𝑛  ∈  ℝ  ∧  𝑥  ∈  ℝ ) )  →  ( 𝑛  ·  𝑥 )  ∈  ℝ ) | 
						
							| 32 | 9 10 29 31 | seqf | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 33 | 32 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  ( ( ( ( 𝑚  +  1 )  /  𝑚 ) ↑𝑐 𝐴 )  /  ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 34 | 9 10 12 33 | climrecl | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ( ( Γ ‘ 𝐴 )  ·  𝐴 )  ∈  ℝ ) | 
						
							| 35 | 34 1 7 | redivcld | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ( ( ( Γ ‘ 𝐴 )  ·  𝐴 )  /  𝐴 )  ∈  ℝ ) | 
						
							| 36 | 8 35 | eqeltrrd | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ( ℤ  ∖  ℕ ) )  →  ( Γ ‘ 𝐴 )  ∈  ℝ ) |