Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ℂ ) |
3 |
|
eldifn |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) |
4 |
2 3
|
eldifd |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
5 |
|
gamcl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ∈ ℂ ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ∈ ℂ ) |
7 |
4
|
dmgmn0 |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ≠ 0 ) |
8 |
6 2 7
|
divcan4d |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ( ( ( Γ ‘ 𝐴 ) · 𝐴 ) / 𝐴 ) = ( Γ ‘ 𝐴 ) ) |
9 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
10 |
|
1zzd |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → 1 ∈ ℤ ) |
11 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) |
12 |
11 4
|
gamcvg2 |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → seq 1 ( · , ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |
13 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
14 |
13
|
peano2nnd |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
15 |
14
|
nnrpd |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
16 |
13
|
nnrpd |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
17 |
15 16
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ ) |
18 |
17
|
rpred |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ ) |
19 |
17
|
rpge0d |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( 𝑚 + 1 ) / 𝑚 ) ) |
20 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
21 |
18 19 20
|
recxpcld |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) ∈ ℝ ) |
22 |
20 13
|
nndivred |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐴 / 𝑚 ) ∈ ℝ ) |
23 |
|
1red |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ ) |
24 |
22 23
|
readdcld |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ∈ ℝ ) |
25 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
26 |
25 13
|
dmgmdivn0 |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ≠ 0 ) |
27 |
21 24 26
|
redivcld |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ∈ ℝ ) |
28 |
27
|
fmpttd |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) : ℕ ⟶ ℝ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
30 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · 𝑥 ) ∈ ℝ ) |
31 |
30
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑛 · 𝑥 ) ∈ ℝ ) |
32 |
9 10 29 31
|
seqf |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → seq 1 ( · , ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) : ℕ ⟶ ℝ ) |
33 |
32
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( · , ( 𝑚 ∈ ℕ ↦ ( ( ( ( 𝑚 + 1 ) / 𝑚 ) ↑𝑐 𝐴 ) / ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
34 |
9 10 12 33
|
climrecl |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ( ( Γ ‘ 𝐴 ) · 𝐴 ) ∈ ℝ ) |
35 |
34 1 7
|
redivcld |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ( ( ( Γ ‘ 𝐴 ) · 𝐴 ) / 𝐴 ) ∈ ℝ ) |
36 |
8 35
|
eqeltrrd |
⊢ ( 𝐴 ∈ ( ℝ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ∈ ℝ ) |