Step |
Hyp |
Ref |
Expression |
1 |
|
rpdmgm |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
2 |
|
lgamcl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
6 |
3 5
|
pncand |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) − ( log ‘ 𝐴 ) ) = ( log Γ ‘ 𝐴 ) ) |
7 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
8 |
|
1zzd |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℤ ) |
9 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
10 |
9 1
|
lgamcvg |
⊢ ( 𝐴 ∈ ℝ+ → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ℝ+ ) |
12 |
11
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
13 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
14 |
13
|
peano2nnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
15 |
14
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
16 |
13
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
17 |
15 16
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ ) |
18 |
17
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ ) |
19 |
12 18
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ∈ ℝ ) |
20 |
11 16
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( 𝐴 / 𝑚 ) ∈ ℝ+ ) |
21 |
|
1rp |
⊢ 1 ∈ ℝ+ |
22 |
21
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ+ ) |
23 |
20 22
|
rpaddcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ∈ ℝ+ ) |
24 |
23
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ∈ ℝ ) |
25 |
19 24
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ∈ ℝ ) |
26 |
25
|
fmpttd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) : ℕ ⟶ ℝ ) |
27 |
26
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
28 |
7 8 27
|
serfre |
⊢ ( 𝐴 ∈ ℝ+ → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) : ℕ ⟶ ℝ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
30 |
7 8 10 29
|
climrecl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ∈ ℝ ) |
31 |
30 4
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) − ( log ‘ 𝐴 ) ) ∈ ℝ ) |
32 |
6 31
|
eqeltrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℝ ) |