| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpdmgm | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 |  | lgamcl | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | relogcl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 | 4 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 | 3 5 | pncand | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  −  ( log ‘ 𝐴 ) )  =  ( log Γ ‘ 𝐴 ) ) | 
						
							| 7 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 8 |  | 1zzd | ⊢ ( 𝐴  ∈  ℝ+  →  1  ∈  ℤ ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 10 | 9 1 | lgamcvg | ⊢ ( 𝐴  ∈  ℝ+  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  𝐴  ∈  ℝ+ ) | 
						
							| 12 | 11 | rpred | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 14 | 13 | peano2nnd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 15 | 14 | nnrpd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 16 | 13 | nnrpd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 17 | 15 16 | rpdivcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 18 | 17 | relogcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 19 | 12 18 | remulcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 20 | 11 16 | rpdivcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( 𝐴  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 21 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℝ+ ) | 
						
							| 23 | 20 22 | rpaddcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  /  𝑚 )  +  1 )  ∈  ℝ+ ) | 
						
							| 24 | 23 | relogcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) )  ∈  ℝ ) | 
						
							| 25 | 19 24 | resubcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 26 | 25 | fmpttd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 28 | 7 8 27 | serfre | ⊢ ( 𝐴  ∈  ℝ+  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 30 | 7 8 10 29 | climrecl | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 31 | 30 4 | resubcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  −  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 32 | 6 31 | eqeltrrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log Γ ‘ 𝐴 )  ∈  ℝ ) |