Metamath Proof Explorer


Theorem relgamcl

Description: The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion relgamcl ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpdmgm ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
2 lgamcl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ )
3 1 2 syl ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℂ )
4 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
5 4 recnd ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ )
6 3 5 pncand ( 𝐴 ∈ ℝ+ → ( ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) − ( log ‘ 𝐴 ) ) = ( log Γ ‘ 𝐴 ) )
7 nnuz ℕ = ( ℤ ‘ 1 )
8 1zzd ( 𝐴 ∈ ℝ+ → 1 ∈ ℤ )
9 eqid ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) )
10 9 1 lgamcvg ( 𝐴 ∈ ℝ+ → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) )
11 simpl ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → 𝐴 ∈ ℝ+ )
12 11 rpred ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → 𝐴 ∈ ℝ )
13 simpr ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ )
14 13 peano2nnd ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ )
15 14 nnrpd ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ+ )
16 13 nnrpd ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ )
17 15 16 rpdivcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ )
18 17 relogcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ )
19 12 18 remulcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ∈ ℝ )
20 11 16 rpdivcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( 𝐴 / 𝑚 ) ∈ ℝ+ )
21 1rp 1 ∈ ℝ+
22 21 a1i ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → 1 ∈ ℝ+ )
23 20 22 rpaddcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ∈ ℝ+ )
24 23 relogcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ∈ ℝ )
25 19 24 resubcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℕ ) → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ∈ ℝ )
26 25 fmpttd ( 𝐴 ∈ ℝ+ → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) : ℕ ⟶ ℝ )
27 26 ffvelrnda ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) ∈ ℝ )
28 7 8 27 serfre ( 𝐴 ∈ ℝ+ → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) : ℕ ⟶ ℝ )
29 28 ffvelrnda ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℕ ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ )
30 7 8 10 29 climrecl ( 𝐴 ∈ ℝ+ → ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ∈ ℝ )
31 30 4 resubcld ( 𝐴 ∈ ℝ+ → ( ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) − ( log ‘ 𝐴 ) ) ∈ ℝ )
32 6 31 eqeltrrd ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℝ )