Metamath Proof Explorer


Theorem relgamcl

Description: The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion relgamcl A+logΓA

Proof

Step Hyp Ref Expression
1 rpdmgm A+A
2 lgamcl AlogΓA
3 1 2 syl A+logΓA
4 relogcl A+logA
5 4 recnd A+logA
6 3 5 pncand A+logΓA+logA-logA=logΓA
7 nnuz =1
8 1zzd A+1
9 eqid mAlogm+1mlogAm+1=mAlogm+1mlogAm+1
10 9 1 lgamcvg A+seq1+mAlogm+1mlogAm+1logΓA+logA
11 simpl A+mA+
12 11 rpred A+mA
13 simpr A+mm
14 13 peano2nnd A+mm+1
15 14 nnrpd A+mm+1+
16 13 nnrpd A+mm+
17 15 16 rpdivcld A+mm+1m+
18 17 relogcld A+mlogm+1m
19 12 18 remulcld A+mAlogm+1m
20 11 16 rpdivcld A+mAm+
21 1rp 1+
22 21 a1i A+m1+
23 20 22 rpaddcld A+mAm+1+
24 23 relogcld A+mlogAm+1
25 19 24 resubcld A+mAlogm+1mlogAm+1
26 25 fmpttd A+mAlogm+1mlogAm+1:
27 26 ffvelcdmda A+nmAlogm+1mlogAm+1n
28 7 8 27 serfre A+seq1+mAlogm+1mlogAm+1:
29 28 ffvelcdmda A+nseq1+mAlogm+1mlogAm+1n
30 7 8 10 29 climrecl A+logΓA+logA
31 30 4 resubcld A+logΓA+logA-logA
32 6 31 eqeltrrd A+logΓA