Metamath Proof Explorer


Theorem relgamcl

Description: The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion relgamcl A + log Γ A

Proof

Step Hyp Ref Expression
1 rpdmgm A + A
2 lgamcl A log Γ A
3 1 2 syl A + log Γ A
4 relogcl A + log A
5 4 recnd A + log A
6 3 5 pncand A + log Γ A + log A - log A = log Γ A
7 nnuz = 1
8 1zzd A + 1
9 eqid m A log m + 1 m log A m + 1 = m A log m + 1 m log A m + 1
10 9 1 lgamcvg A + seq 1 + m A log m + 1 m log A m + 1 log Γ A + log A
11 simpl A + m A +
12 11 rpred A + m A
13 simpr A + m m
14 13 peano2nnd A + m m + 1
15 14 nnrpd A + m m + 1 +
16 13 nnrpd A + m m +
17 15 16 rpdivcld A + m m + 1 m +
18 17 relogcld A + m log m + 1 m
19 12 18 remulcld A + m A log m + 1 m
20 11 16 rpdivcld A + m A m +
21 1rp 1 +
22 21 a1i A + m 1 +
23 20 22 rpaddcld A + m A m + 1 +
24 23 relogcld A + m log A m + 1
25 19 24 resubcld A + m A log m + 1 m log A m + 1
26 25 fmpttd A + m A log m + 1 m log A m + 1 :
27 26 ffvelrnda A + n m A log m + 1 m log A m + 1 n
28 7 8 27 serfre A + seq 1 + m A log m + 1 m log A m + 1 :
29 28 ffvelrnda A + n seq 1 + m A log m + 1 m log A m + 1 n
30 7 8 10 29 climrecl A + log Γ A + log A
31 30 4 resubcld A + log Γ A + log A - log A
32 6 31 eqeltrrd A + log Γ A