| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpdmgm |  |-  ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 2 |  | lgamcl |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. RR+ -> ( log_G ` A ) e. CC ) | 
						
							| 4 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( A e. RR+ -> ( log ` A ) e. CC ) | 
						
							| 6 | 3 5 | pncand |  |-  ( A e. RR+ -> ( ( ( log_G ` A ) + ( log ` A ) ) - ( log ` A ) ) = ( log_G ` A ) ) | 
						
							| 7 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 8 |  | 1zzd |  |-  ( A e. RR+ -> 1 e. ZZ ) | 
						
							| 9 |  | eqid |  |-  ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 10 | 9 1 | lgamcvg |  |-  ( A e. RR+ -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 11 |  | simpl |  |-  ( ( A e. RR+ /\ m e. NN ) -> A e. RR+ ) | 
						
							| 12 | 11 | rpred |  |-  ( ( A e. RR+ /\ m e. NN ) -> A e. RR ) | 
						
							| 13 |  | simpr |  |-  ( ( A e. RR+ /\ m e. NN ) -> m e. NN ) | 
						
							| 14 | 13 | peano2nnd |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 15 | 14 | nnrpd |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( m + 1 ) e. RR+ ) | 
						
							| 16 | 13 | nnrpd |  |-  ( ( A e. RR+ /\ m e. NN ) -> m e. RR+ ) | 
						
							| 17 | 15 16 | rpdivcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR+ ) | 
						
							| 18 | 17 | relogcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( log ` ( ( m + 1 ) / m ) ) e. RR ) | 
						
							| 19 | 12 18 | remulcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) e. RR ) | 
						
							| 20 | 11 16 | rpdivcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( A / m ) e. RR+ ) | 
						
							| 21 |  | 1rp |  |-  1 e. RR+ | 
						
							| 22 | 21 | a1i |  |-  ( ( A e. RR+ /\ m e. NN ) -> 1 e. RR+ ) | 
						
							| 23 | 20 22 | rpaddcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( ( A / m ) + 1 ) e. RR+ ) | 
						
							| 24 | 23 | relogcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( log ` ( ( A / m ) + 1 ) ) e. RR ) | 
						
							| 25 | 19 24 | resubcld |  |-  ( ( A e. RR+ /\ m e. NN ) -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) e. RR ) | 
						
							| 26 | 25 | fmpttd |  |-  ( A e. RR+ -> ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) : NN --> RR ) | 
						
							| 27 | 26 | ffvelcdmda |  |-  ( ( A e. RR+ /\ n e. NN ) -> ( ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ` n ) e. RR ) | 
						
							| 28 | 7 8 27 | serfre |  |-  ( A e. RR+ -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) : NN --> RR ) | 
						
							| 29 | 28 | ffvelcdmda |  |-  ( ( A e. RR+ /\ n e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ` n ) e. RR ) | 
						
							| 30 | 7 8 10 29 | climrecl |  |-  ( A e. RR+ -> ( ( log_G ` A ) + ( log ` A ) ) e. RR ) | 
						
							| 31 | 30 4 | resubcld |  |-  ( A e. RR+ -> ( ( ( log_G ` A ) + ( log ` A ) ) - ( log ` A ) ) e. RR ) | 
						
							| 32 | 6 31 | eqeltrrd |  |-  ( A e. RR+ -> ( log_G ` A ) e. RR ) |