| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpdmgm |
|- ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 2 |
|
lgamcl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) |
| 3 |
1 2
|
syl |
|- ( A e. RR+ -> ( log_G ` A ) e. CC ) |
| 4 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 5 |
4
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 6 |
3 5
|
pncand |
|- ( A e. RR+ -> ( ( ( log_G ` A ) + ( log ` A ) ) - ( log ` A ) ) = ( log_G ` A ) ) |
| 7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 8 |
|
1zzd |
|- ( A e. RR+ -> 1 e. ZZ ) |
| 9 |
|
eqid |
|- ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
| 10 |
9 1
|
lgamcvg |
|- ( A e. RR+ -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) |
| 11 |
|
simpl |
|- ( ( A e. RR+ /\ m e. NN ) -> A e. RR+ ) |
| 12 |
11
|
rpred |
|- ( ( A e. RR+ /\ m e. NN ) -> A e. RR ) |
| 13 |
|
simpr |
|- ( ( A e. RR+ /\ m e. NN ) -> m e. NN ) |
| 14 |
13
|
peano2nnd |
|- ( ( A e. RR+ /\ m e. NN ) -> ( m + 1 ) e. NN ) |
| 15 |
14
|
nnrpd |
|- ( ( A e. RR+ /\ m e. NN ) -> ( m + 1 ) e. RR+ ) |
| 16 |
13
|
nnrpd |
|- ( ( A e. RR+ /\ m e. NN ) -> m e. RR+ ) |
| 17 |
15 16
|
rpdivcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR+ ) |
| 18 |
17
|
relogcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( log ` ( ( m + 1 ) / m ) ) e. RR ) |
| 19 |
12 18
|
remulcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) e. RR ) |
| 20 |
11 16
|
rpdivcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( A / m ) e. RR+ ) |
| 21 |
|
1rp |
|- 1 e. RR+ |
| 22 |
21
|
a1i |
|- ( ( A e. RR+ /\ m e. NN ) -> 1 e. RR+ ) |
| 23 |
20 22
|
rpaddcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( ( A / m ) + 1 ) e. RR+ ) |
| 24 |
23
|
relogcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( log ` ( ( A / m ) + 1 ) ) e. RR ) |
| 25 |
19 24
|
resubcld |
|- ( ( A e. RR+ /\ m e. NN ) -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) e. RR ) |
| 26 |
25
|
fmpttd |
|- ( A e. RR+ -> ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) : NN --> RR ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( A e. RR+ /\ n e. NN ) -> ( ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ` n ) e. RR ) |
| 28 |
7 8 27
|
serfre |
|- ( A e. RR+ -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) : NN --> RR ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( A e. RR+ /\ n e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ` n ) e. RR ) |
| 30 |
7 8 10 29
|
climrecl |
|- ( A e. RR+ -> ( ( log_G ` A ) + ( log ` A ) ) e. RR ) |
| 31 |
30 4
|
resubcld |
|- ( A e. RR+ -> ( ( ( log_G ` A ) + ( log ` A ) ) - ( log ` A ) ) e. RR ) |
| 32 |
6 31
|
eqeltrrd |
|- ( A e. RR+ -> ( log_G ` A ) e. RR ) |