Description: The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpgamcl | |- ( A e. RR+ -> ( _G ` A ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpdmgm | |- ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) ) |
|
| 2 | eflgam | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
|
| 3 | 1 2 | syl | |- ( A e. RR+ -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
| 4 | relgamcl | |- ( A e. RR+ -> ( log_G ` A ) e. RR ) |
|
| 5 | 4 | rpefcld | |- ( A e. RR+ -> ( exp ` ( log_G ` A ) ) e. RR+ ) |
| 6 | 3 5 | eqeltrrd | |- ( A e. RR+ -> ( _G ` A ) e. RR+ ) |