Description: The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflgam | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-gam | |- _G = ( exp o. log_G ) | |
| 2 | 1 | fveq1i | |- ( _G ` A ) = ( ( exp o. log_G ) ` A ) | 
| 3 | lgamf | |- log_G : ( CC \ ( ZZ \ NN ) ) --> CC | |
| 4 | fvco3 | |- ( ( log_G : ( CC \ ( ZZ \ NN ) ) --> CC /\ A e. ( CC \ ( ZZ \ NN ) ) ) -> ( ( exp o. log_G ) ` A ) = ( exp ` ( log_G ` A ) ) ) | |
| 5 | 3 4 | mpan | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( ( exp o. log_G ) ` A ) = ( exp ` ( log_G ` A ) ) ) | 
| 6 | 2 5 | eqtr2id | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |