Metamath Proof Explorer


Theorem eflgam

Description: The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion eflgam
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) )

Proof

Step Hyp Ref Expression
1 df-gam
 |-  _G = ( exp o. log_G )
2 1 fveq1i
 |-  ( _G ` A ) = ( ( exp o. log_G ) ` A )
3 lgamf
 |-  log_G : ( CC \ ( ZZ \ NN ) ) --> CC
4 fvco3
 |-  ( ( log_G : ( CC \ ( ZZ \ NN ) ) --> CC /\ A e. ( CC \ ( ZZ \ NN ) ) ) -> ( ( exp o. log_G ) ` A ) = ( exp ` ( log_G ` A ) ) )
5 3 4 mpan
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( ( exp o. log_G ) ` A ) = ( exp ` ( log_G ` A ) ) )
6 2 5 eqtr2id
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) )