Metamath Proof Explorer


Theorem gamne0

Description: The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamne0
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) =/= 0 )

Proof

Step Hyp Ref Expression
1 eflgam
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) )
2 lgamcl
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC )
3 efne0
 |-  ( ( log_G ` A ) e. CC -> ( exp ` ( log_G ` A ) ) =/= 0 )
4 2 3 syl
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) =/= 0 )
5 1 4 eqnetrrd
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) =/= 0 )