Description: The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gamne0 | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflgam | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
|
| 2 | lgamcl | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) |
|
| 3 | efne0 | |- ( ( log_G ` A ) e. CC -> ( exp ` ( log_G ` A ) ) =/= 0 ) |
|
| 4 | 2 3 | syl | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) =/= 0 ) |
| 5 | 1 4 | eqnetrrd | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) =/= 0 ) |