Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( x = A -> ( x e. ( ZZ \ NN ) <-> A e. ( ZZ \ NN ) ) ) |
2 |
|
fveq2 |
|- ( x = A -> ( _G ` x ) = ( _G ` A ) ) |
3 |
2
|
oveq2d |
|- ( x = A -> ( 1 / ( _G ` x ) ) = ( 1 / ( _G ` A ) ) ) |
4 |
1 3
|
ifbieq2d |
|- ( x = A -> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) ) |
5 |
|
df-igam |
|- 1/_G = ( x e. CC |-> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) ) |
6 |
|
c0ex |
|- 0 e. _V |
7 |
|
ovex |
|- ( 1 / ( _G ` A ) ) e. _V |
8 |
6 7
|
ifex |
|- if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) e. _V |
9 |
4 5 8
|
fvmpt |
|- ( A e. CC -> ( 1/_G ` A ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) ) |