| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( x = A -> ( x e. ( ZZ \ NN ) <-> A e. ( ZZ \ NN ) ) ) | 
						
							| 2 |  | fveq2 |  |-  ( x = A -> ( _G ` x ) = ( _G ` A ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( x = A -> ( 1 / ( _G ` x ) ) = ( 1 / ( _G ` A ) ) ) | 
						
							| 4 | 1 3 | ifbieq2d |  |-  ( x = A -> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) ) | 
						
							| 5 |  | df-igam |  |-  1/_G = ( x e. CC |-> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) ) | 
						
							| 6 |  | c0ex |  |-  0 e. _V | 
						
							| 7 |  | ovex |  |-  ( 1 / ( _G ` A ) ) e. _V | 
						
							| 8 | 6 7 | ifex |  |-  if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) e. _V | 
						
							| 9 | 4 5 8 | fvmpt |  |-  ( A e. CC -> ( 1/_G ` A ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) ) |