Metamath Proof Explorer


Theorem igamval

Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamval A1ΓA=ifA01ΓA

Proof

Step Hyp Ref Expression
1 eleq1 x=AxA
2 fveq2 x=AΓx=ΓA
3 2 oveq2d x=A1Γx=1ΓA
4 1 3 ifbieq2d x=Aifx01Γx=ifA01ΓA
5 df-igam 1Γ=xifx01Γx
6 c0ex 0V
7 ovex 1ΓAV
8 6 7 ifex ifA01ΓAV
9 4 5 8 fvmpt A1ΓA=ifA01ΓA