Metamath Proof Explorer


Theorem igamval

Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamval A 1 Γ A = if A 0 1 Γ A

Proof

Step Hyp Ref Expression
1 eleq1 x = A x A
2 fveq2 x = A Γ x = Γ A
3 2 oveq2d x = A 1 Γ x = 1 Γ A
4 1 3 ifbieq2d x = A if x 0 1 Γ x = if A 0 1 Γ A
5 df-igam 1 Γ = x if x 0 1 Γ x
6 c0ex 0 V
7 ovex 1 Γ A V
8 6 7 ifex if A 0 1 Γ A V
9 4 5 8 fvmpt A 1 Γ A = if A 0 1 Γ A