Metamath Proof Explorer


Definition df-igam

Description: Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion df-igam 1 Γ = x if x 0 1 Γ x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cigam class 1 Γ
1 vx setvar x
2 cc class
3 1 cv setvar x
4 cz class
5 cn class
6 4 5 cdif class
7 3 6 wcel wff x
8 cc0 class 0
9 c1 class 1
10 cdiv class ÷
11 cgam class Γ
12 3 11 cfv class Γ x
13 9 12 10 co class 1 Γ x
14 7 8 13 cif class if x 0 1 Γ x
15 1 2 14 cmpt class x if x 0 1 Γ x
16 0 15 wceq wff 1 Γ = x if x 0 1 Γ x