Description: Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-igam | ⊢ 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cigam | ⊢ 1/Γ | |
1 | vx | ⊢ 𝑥 | |
2 | cc | ⊢ ℂ | |
3 | 1 | cv | ⊢ 𝑥 |
4 | cz | ⊢ ℤ | |
5 | cn | ⊢ ℕ | |
6 | 4 5 | cdif | ⊢ ( ℤ ∖ ℕ ) |
7 | 3 6 | wcel | ⊢ 𝑥 ∈ ( ℤ ∖ ℕ ) |
8 | cc0 | ⊢ 0 | |
9 | c1 | ⊢ 1 | |
10 | cdiv | ⊢ / | |
11 | cgam | ⊢ Γ | |
12 | 3 11 | cfv | ⊢ ( Γ ‘ 𝑥 ) |
13 | 9 12 10 | co | ⊢ ( 1 / ( Γ ‘ 𝑥 ) ) |
14 | 7 8 13 | cif | ⊢ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) |
15 | 1 2 14 | cmpt | ⊢ ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) ) |
16 | 0 15 | wceq | ⊢ 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) ) |