Metamath Proof Explorer


Definition df-igam

Description: Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion df-igam 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cigam 1/Γ
1 vx 𝑥
2 cc
3 1 cv 𝑥
4 cz
5 cn
6 4 5 cdif ( ℤ ∖ ℕ )
7 3 6 wcel 𝑥 ∈ ( ℤ ∖ ℕ )
8 cc0 0
9 c1 1
10 cdiv /
11 cgam Γ
12 3 11 cfv ( Γ ‘ 𝑥 )
13 9 12 10 co ( 1 / ( Γ ‘ 𝑥 ) )
14 7 8 13 cif if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) )
15 1 2 14 cmpt ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) )
16 0 15 wceq 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) )