Metamath Proof Explorer


Definition df-igam

Description: Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion df-igam
|- 1/_G = ( x e. CC |-> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cigam
 |-  1/_G
1 vx
 |-  x
2 cc
 |-  CC
3 1 cv
 |-  x
4 cz
 |-  ZZ
5 cn
 |-  NN
6 4 5 cdif
 |-  ( ZZ \ NN )
7 3 6 wcel
 |-  x e. ( ZZ \ NN )
8 cc0
 |-  0
9 c1
 |-  1
10 cdiv
 |-  /
11 cgam
 |-  _G
12 3 11 cfv
 |-  ( _G ` x )
13 9 12 10 co
 |-  ( 1 / ( _G ` x ) )
14 7 8 13 cif
 |-  if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) )
15 1 2 14 cmpt
 |-  ( x e. CC |-> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) )
16 0 15 wceq
 |-  1/_G = ( x e. CC |-> if ( x e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` x ) ) ) )