Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ℤ ∖ ℕ ) ↔ 𝐴 ∈ ( ℤ ∖ ℕ ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( Γ ‘ 𝑥 ) = ( Γ ‘ 𝐴 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 1 / ( Γ ‘ 𝑥 ) ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) |
4 |
1 3
|
ifbieq2d |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) ) |
5 |
|
df-igam |
⊢ 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) ) |
6 |
|
c0ex |
⊢ 0 ∈ V |
7 |
|
ovex |
⊢ ( 1 / ( Γ ‘ 𝐴 ) ) ∈ V |
8 |
6 7
|
ifex |
⊢ if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) ∈ V |
9 |
4 5 8
|
fvmpt |
⊢ ( 𝐴 ∈ ℂ → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) ) |