Metamath Proof Explorer


Theorem igamval

Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamval ( 𝐴 ∈ ℂ → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ℤ ∖ ℕ ) ↔ 𝐴 ∈ ( ℤ ∖ ℕ ) ) )
2 fveq2 ( 𝑥 = 𝐴 → ( Γ ‘ 𝑥 ) = ( Γ ‘ 𝐴 ) )
3 2 oveq2d ( 𝑥 = 𝐴 → ( 1 / ( Γ ‘ 𝑥 ) ) = ( 1 / ( Γ ‘ 𝐴 ) ) )
4 1 3 ifbieq2d ( 𝑥 = 𝐴 → if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) )
5 df-igam 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) )
6 c0ex 0 ∈ V
7 ovex ( 1 / ( Γ ‘ 𝐴 ) ) ∈ V
8 6 7 ifex if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) ∈ V
9 4 5 8 fvmpt ( 𝐴 ∈ ℂ → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) )