| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  ( ℤ  ∖  ℕ )  ↔  𝐴  ∈  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( Γ ‘ 𝑥 )  =  ( Γ ‘ 𝐴 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 1  /  ( Γ ‘ 𝑥 ) )  =  ( 1  /  ( Γ ‘ 𝐴 ) ) ) | 
						
							| 4 | 1 3 | ifbieq2d | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  ∈  ( ℤ  ∖  ℕ ) ,  0 ,  ( 1  /  ( Γ ‘ 𝑥 ) ) )  =  if ( 𝐴  ∈  ( ℤ  ∖  ℕ ) ,  0 ,  ( 1  /  ( Γ ‘ 𝐴 ) ) ) ) | 
						
							| 5 |  | df-igam | ⊢ 1/Γ  =  ( 𝑥  ∈  ℂ  ↦  if ( 𝑥  ∈  ( ℤ  ∖  ℕ ) ,  0 ,  ( 1  /  ( Γ ‘ 𝑥 ) ) ) ) | 
						
							| 6 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 7 |  | ovex | ⊢ ( 1  /  ( Γ ‘ 𝐴 ) )  ∈  V | 
						
							| 8 | 6 7 | ifex | ⊢ if ( 𝐴  ∈  ( ℤ  ∖  ℕ ) ,  0 ,  ( 1  /  ( Γ ‘ 𝐴 ) ) )  ∈  V | 
						
							| 9 | 4 5 8 | fvmpt | ⊢ ( 𝐴  ∈  ℂ  →  ( 1/Γ ‘ 𝐴 )  =  if ( 𝐴  ∈  ( ℤ  ∖  ℕ ) ,  0 ,  ( 1  /  ( Γ ‘ 𝐴 ) ) ) ) |