Metamath Proof Explorer


Theorem igamz

Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamz ( 𝐴 ∈ ( ℤ ∖ ℕ ) → ( 1/Γ ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 eldifi ( 𝐴 ∈ ( ℤ ∖ ℕ ) → 𝐴 ∈ ℤ )
2 1 zcnd ( 𝐴 ∈ ( ℤ ∖ ℕ ) → 𝐴 ∈ ℂ )
3 igamval ( 𝐴 ∈ ℂ → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) )
4 2 3 syl ( 𝐴 ∈ ( ℤ ∖ ℕ ) → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) )
5 iftrue ( 𝐴 ∈ ( ℤ ∖ ℕ ) → if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) = 0 )
6 4 5 eqtrd ( 𝐴 ∈ ( ℤ ∖ ℕ ) → ( 1/Γ ‘ 𝐴 ) = 0 )