Metamath Proof Explorer


Theorem igamz

Description: Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamz
|- ( A e. ( ZZ \ NN ) -> ( 1/_G ` A ) = 0 )

Proof

Step Hyp Ref Expression
1 eldifi
 |-  ( A e. ( ZZ \ NN ) -> A e. ZZ )
2 1 zcnd
 |-  ( A e. ( ZZ \ NN ) -> A e. CC )
3 igamval
 |-  ( A e. CC -> ( 1/_G ` A ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) )
4 2 3 syl
 |-  ( A e. ( ZZ \ NN ) -> ( 1/_G ` A ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) )
5 iftrue
 |-  ( A e. ( ZZ \ NN ) -> if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) = 0 )
6 4 5 eqtrd
 |-  ( A e. ( ZZ \ NN ) -> ( 1/_G ` A ) = 0 )