Metamath Proof Explorer


Theorem igamgam

Description: Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamgam
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1/_G ` A ) = ( 1 / ( _G ` A ) ) )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. A e. ( ZZ \ NN ) ) )
2 igamval
 |-  ( A e. CC -> ( 1/_G ` A ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) )
3 iffalse
 |-  ( -. A e. ( ZZ \ NN ) -> if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) = ( 1 / ( _G ` A ) ) )
4 2 3 sylan9eq
 |-  ( ( A e. CC /\ -. A e. ( ZZ \ NN ) ) -> ( 1/_G ` A ) = ( 1 / ( _G ` A ) ) )
5 1 4 sylbi
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1/_G ` A ) = ( 1 / ( _G ` A ) ) )