| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eflgam |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
| 2 |
1
|
oveq2d |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1 / ( exp ` ( log_G ` A ) ) ) = ( 1 / ( _G ` A ) ) ) |
| 3 |
|
lgamcl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) |
| 4 |
|
efneg |
|- ( ( log_G ` A ) e. CC -> ( exp ` -u ( log_G ` A ) ) = ( 1 / ( exp ` ( log_G ` A ) ) ) ) |
| 5 |
3 4
|
syl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` -u ( log_G ` A ) ) = ( 1 / ( exp ` ( log_G ` A ) ) ) ) |
| 6 |
|
igamgam |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1/_G ` A ) = ( 1 / ( _G ` A ) ) ) |
| 7 |
2 5 6
|
3eqtr4rd |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1/_G ` A ) = ( exp ` -u ( log_G ` A ) ) ) |