Step |
Hyp |
Ref |
Expression |
1 |
|
eflgam |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) |
3 |
|
lgamcl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
efneg |
⊢ ( ( log Γ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ - ( log Γ ‘ 𝐴 ) ) = ( 1 / ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ - ( log Γ ‘ 𝐴 ) ) = ( 1 / ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) ) |
6 |
|
igamgam |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) |
7 |
2 5 6
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( exp ‘ - ( log Γ ‘ 𝐴 ) ) ) |