Metamath Proof Explorer


Theorem igamlgam

Description: Value of the inverse Gamma function in terms of the log-Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamlgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( exp ‘ - ( log Γ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eflgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )
2 1 oveq2d ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) = ( 1 / ( Γ ‘ 𝐴 ) ) )
3 lgamcl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ )
4 efneg ( ( log Γ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ - ( log Γ ‘ 𝐴 ) ) = ( 1 / ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) )
5 3 4 syl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ - ( log Γ ‘ 𝐴 ) ) = ( 1 / ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) )
6 igamgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) )
7 2 5 6 3eqtr4rd ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( exp ‘ - ( log Γ ‘ 𝐴 ) ) )