Metamath Proof Explorer


Theorem igamf

Description: Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamf 1/Γ : ℂ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 df-igam 1/Γ = ( 𝑥 ∈ ℂ ↦ if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) )
2 0cnd ( ( 𝑥 ∈ ℂ ∧ 𝑥 ∈ ( ℤ ∖ ℕ ) ) → 0 ∈ ℂ )
3 eldif ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝑥 ∈ ℂ ∧ ¬ 𝑥 ∈ ( ℤ ∖ ℕ ) ) )
4 gamcl ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝑥 ) ∈ ℂ )
5 gamne0 ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝑥 ) ≠ 0 )
6 4 5 reccld ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( Γ ‘ 𝑥 ) ) ∈ ℂ )
7 3 6 sylbir ( ( 𝑥 ∈ ℂ ∧ ¬ 𝑥 ∈ ( ℤ ∖ ℕ ) ) → ( 1 / ( Γ ‘ 𝑥 ) ) ∈ ℂ )
8 2 7 ifclda ( 𝑥 ∈ ℂ → if ( 𝑥 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝑥 ) ) ) ∈ ℂ )
9 1 8 fmpti 1/Γ : ℂ ⟶ ℂ