Metamath Proof Explorer


Theorem gamne0

Description: The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamne0 ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 eflgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )
2 lgamcl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ )
3 efne0 ( ( log Γ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ ( log Γ ‘ 𝐴 ) ) ≠ 0 )
4 2 3 syl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) ≠ 0 )
5 1 4 eqnetrrd ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ≠ 0 )