Description: The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflgam | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-gam | ⊢ Γ = ( exp ∘ log Γ ) | |
| 2 | 1 | fveq1i | ⊢ ( Γ ‘ 𝐴 ) = ( ( exp ∘ log Γ ) ‘ 𝐴 ) | 
| 3 | lgamf | ⊢ log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ | |
| 4 | fvco3 | ⊢ ( ( log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ∧ 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) → ( ( exp ∘ log Γ ) ‘ 𝐴 ) = ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( ( exp ∘ log Γ ) ‘ 𝐴 ) = ( exp ‘ ( log Γ ‘ 𝐴 ) ) ) | 
| 6 | 2 5 | eqtr2id | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) |