Metamath Proof Explorer


Theorem eflgam

Description: The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion eflgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-gam Γ = ( exp ∘ log Γ )
2 1 fveq1i ( Γ ‘ 𝐴 ) = ( ( exp ∘ log Γ ) ‘ 𝐴 )
3 lgamf log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ
4 fvco3 ( ( log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ∧ 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) → ( ( exp ∘ log Γ ) ‘ 𝐴 ) = ( exp ‘ ( log Γ ‘ 𝐴 ) ) )
5 3 4 mpan ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( ( exp ∘ log Γ ) ‘ 𝐴 ) = ( exp ‘ ( log Γ ‘ 𝐴 ) ) )
6 2 5 eqtr2id ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )