Metamath Proof Explorer


Theorem igamgam

Description: Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion igamgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) )
2 igamval ( 𝐴 ∈ ℂ → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) )
3 iffalse ( ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) → if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) = ( 1 / ( Γ ‘ 𝐴 ) ) )
4 2 3 sylan9eq ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) )
5 1 4 sylbi ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) )