Description: Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | igamgam | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) ) | |
2 | igamval | ⊢ ( 𝐴 ∈ ℂ → ( 1/Γ ‘ 𝐴 ) = if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) ) | |
3 | iffalse | ⊢ ( ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) → if ( 𝐴 ∈ ( ℤ ∖ ℕ ) , 0 , ( 1 / ( Γ ‘ 𝐴 ) ) ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) | |
4 | 2 3 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) |
5 | 1 4 | sylbi | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) |