| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn |  |-  ( m e. NN -> ( m + 1 ) e. NN ) | 
						
							| 2 | 1 | nnrpd |  |-  ( m e. NN -> ( m + 1 ) e. RR+ ) | 
						
							| 3 |  | nnrp |  |-  ( m e. NN -> m e. RR+ ) | 
						
							| 4 | 2 3 | rpdivcld |  |-  ( m e. NN -> ( ( m + 1 ) / m ) e. RR+ ) | 
						
							| 5 | 4 | relogcld |  |-  ( m e. NN -> ( log ` ( ( m + 1 ) / m ) ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( m e. NN -> ( log ` ( ( m + 1 ) / m ) ) e. CC ) | 
						
							| 7 | 6 | mullidd |  |-  ( m e. NN -> ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) = ( log ` ( ( m + 1 ) / m ) ) ) | 
						
							| 8 |  | nncn |  |-  ( m e. NN -> m e. CC ) | 
						
							| 9 |  | nnne0 |  |-  ( m e. NN -> m =/= 0 ) | 
						
							| 10 | 8 9 | dividd |  |-  ( m e. NN -> ( m / m ) = 1 ) | 
						
							| 11 | 10 | oveq1d |  |-  ( m e. NN -> ( ( m / m ) + ( 1 / m ) ) = ( 1 + ( 1 / m ) ) ) | 
						
							| 12 |  | 1cnd |  |-  ( m e. NN -> 1 e. CC ) | 
						
							| 13 | 8 12 8 9 | divdird |  |-  ( m e. NN -> ( ( m + 1 ) / m ) = ( ( m / m ) + ( 1 / m ) ) ) | 
						
							| 14 | 8 9 | reccld |  |-  ( m e. NN -> ( 1 / m ) e. CC ) | 
						
							| 15 | 14 12 | addcomd |  |-  ( m e. NN -> ( ( 1 / m ) + 1 ) = ( 1 + ( 1 / m ) ) ) | 
						
							| 16 | 11 13 15 | 3eqtr4rd |  |-  ( m e. NN -> ( ( 1 / m ) + 1 ) = ( ( m + 1 ) / m ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( m e. NN -> ( log ` ( ( 1 / m ) + 1 ) ) = ( log ` ( ( m + 1 ) / m ) ) ) | 
						
							| 18 | 7 17 | oveq12d |  |-  ( m e. NN -> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) = ( ( log ` ( ( m + 1 ) / m ) ) - ( log ` ( ( m + 1 ) / m ) ) ) ) | 
						
							| 19 | 6 | subidd |  |-  ( m e. NN -> ( ( log ` ( ( m + 1 ) / m ) ) - ( log ` ( ( m + 1 ) / m ) ) ) = 0 ) | 
						
							| 20 | 18 19 | eqtrd |  |-  ( m e. NN -> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) = 0 ) | 
						
							| 21 | 20 | mpteq2ia |  |-  ( m e. NN |-> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) ) = ( m e. NN |-> 0 ) | 
						
							| 22 |  | fconstmpt |  |-  ( NN X. { 0 } ) = ( m e. NN |-> 0 ) | 
						
							| 23 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 24 | 23 | xpeq1i |  |-  ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) | 
						
							| 25 | 21 22 24 | 3eqtr2ri |  |-  ( ( ZZ>= ` 1 ) X. { 0 } ) = ( m e. NN |-> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) ) | 
						
							| 26 |  | ax-1cn |  |-  1 e. CC | 
						
							| 27 |  | 1nn |  |-  1 e. NN | 
						
							| 28 |  | eldifn |  |-  ( 1 e. ( ZZ \ NN ) -> -. 1 e. NN ) | 
						
							| 29 | 27 28 | mt2 |  |-  -. 1 e. ( ZZ \ NN ) | 
						
							| 30 |  | eldif |  |-  ( 1 e. ( CC \ ( ZZ \ NN ) ) <-> ( 1 e. CC /\ -. 1 e. ( ZZ \ NN ) ) ) | 
						
							| 31 | 26 29 30 | mpbir2an |  |-  1 e. ( CC \ ( ZZ \ NN ) ) | 
						
							| 32 | 31 | a1i |  |-  ( T. -> 1 e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 33 | 25 32 | lgamcvg |  |-  ( T. -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( ( log_G ` 1 ) + ( log ` 1 ) ) ) | 
						
							| 34 | 33 | mptru |  |-  seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( ( log_G ` 1 ) + ( log ` 1 ) ) | 
						
							| 35 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 36 | 35 | oveq2i |  |-  ( ( log_G ` 1 ) + ( log ` 1 ) ) = ( ( log_G ` 1 ) + 0 ) | 
						
							| 37 |  | lgamcl |  |-  ( 1 e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` 1 ) e. CC ) | 
						
							| 38 | 31 37 | ax-mp |  |-  ( log_G ` 1 ) e. CC | 
						
							| 39 | 38 | addridi |  |-  ( ( log_G ` 1 ) + 0 ) = ( log_G ` 1 ) | 
						
							| 40 | 36 39 | eqtri |  |-  ( ( log_G ` 1 ) + ( log ` 1 ) ) = ( log_G ` 1 ) | 
						
							| 41 | 34 40 | breqtri |  |-  seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( log_G ` 1 ) | 
						
							| 42 |  | 1z |  |-  1 e. ZZ | 
						
							| 43 |  | serclim0 |  |-  ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) | 
						
							| 44 | 42 43 | ax-mp |  |-  seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 | 
						
							| 45 |  | climuni |  |-  ( ( seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( log_G ` 1 ) /\ seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) -> ( log_G ` 1 ) = 0 ) | 
						
							| 46 | 41 44 45 | mp2an |  |-  ( log_G ` 1 ) = 0 |