Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
2 |
1
|
nnrpd |
|- ( m e. NN -> ( m + 1 ) e. RR+ ) |
3 |
|
nnrp |
|- ( m e. NN -> m e. RR+ ) |
4 |
2 3
|
rpdivcld |
|- ( m e. NN -> ( ( m + 1 ) / m ) e. RR+ ) |
5 |
4
|
relogcld |
|- ( m e. NN -> ( log ` ( ( m + 1 ) / m ) ) e. RR ) |
6 |
5
|
recnd |
|- ( m e. NN -> ( log ` ( ( m + 1 ) / m ) ) e. CC ) |
7 |
6
|
mulid2d |
|- ( m e. NN -> ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) = ( log ` ( ( m + 1 ) / m ) ) ) |
8 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
9 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
10 |
8 9
|
dividd |
|- ( m e. NN -> ( m / m ) = 1 ) |
11 |
10
|
oveq1d |
|- ( m e. NN -> ( ( m / m ) + ( 1 / m ) ) = ( 1 + ( 1 / m ) ) ) |
12 |
|
1cnd |
|- ( m e. NN -> 1 e. CC ) |
13 |
8 12 8 9
|
divdird |
|- ( m e. NN -> ( ( m + 1 ) / m ) = ( ( m / m ) + ( 1 / m ) ) ) |
14 |
8 9
|
reccld |
|- ( m e. NN -> ( 1 / m ) e. CC ) |
15 |
14 12
|
addcomd |
|- ( m e. NN -> ( ( 1 / m ) + 1 ) = ( 1 + ( 1 / m ) ) ) |
16 |
11 13 15
|
3eqtr4rd |
|- ( m e. NN -> ( ( 1 / m ) + 1 ) = ( ( m + 1 ) / m ) ) |
17 |
16
|
fveq2d |
|- ( m e. NN -> ( log ` ( ( 1 / m ) + 1 ) ) = ( log ` ( ( m + 1 ) / m ) ) ) |
18 |
7 17
|
oveq12d |
|- ( m e. NN -> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) = ( ( log ` ( ( m + 1 ) / m ) ) - ( log ` ( ( m + 1 ) / m ) ) ) ) |
19 |
6
|
subidd |
|- ( m e. NN -> ( ( log ` ( ( m + 1 ) / m ) ) - ( log ` ( ( m + 1 ) / m ) ) ) = 0 ) |
20 |
18 19
|
eqtrd |
|- ( m e. NN -> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) = 0 ) |
21 |
20
|
mpteq2ia |
|- ( m e. NN |-> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) ) = ( m e. NN |-> 0 ) |
22 |
|
fconstmpt |
|- ( NN X. { 0 } ) = ( m e. NN |-> 0 ) |
23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
24 |
23
|
xpeq1i |
|- ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
25 |
21 22 24
|
3eqtr2ri |
|- ( ( ZZ>= ` 1 ) X. { 0 } ) = ( m e. NN |-> ( ( 1 x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( 1 / m ) + 1 ) ) ) ) |
26 |
|
ax-1cn |
|- 1 e. CC |
27 |
|
1nn |
|- 1 e. NN |
28 |
|
eldifn |
|- ( 1 e. ( ZZ \ NN ) -> -. 1 e. NN ) |
29 |
27 28
|
mt2 |
|- -. 1 e. ( ZZ \ NN ) |
30 |
|
eldif |
|- ( 1 e. ( CC \ ( ZZ \ NN ) ) <-> ( 1 e. CC /\ -. 1 e. ( ZZ \ NN ) ) ) |
31 |
26 29 30
|
mpbir2an |
|- 1 e. ( CC \ ( ZZ \ NN ) ) |
32 |
31
|
a1i |
|- ( T. -> 1 e. ( CC \ ( ZZ \ NN ) ) ) |
33 |
25 32
|
lgamcvg |
|- ( T. -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( ( log_G ` 1 ) + ( log ` 1 ) ) ) |
34 |
33
|
mptru |
|- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( ( log_G ` 1 ) + ( log ` 1 ) ) |
35 |
|
log1 |
|- ( log ` 1 ) = 0 |
36 |
35
|
oveq2i |
|- ( ( log_G ` 1 ) + ( log ` 1 ) ) = ( ( log_G ` 1 ) + 0 ) |
37 |
|
lgamcl |
|- ( 1 e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` 1 ) e. CC ) |
38 |
31 37
|
ax-mp |
|- ( log_G ` 1 ) e. CC |
39 |
38
|
addid1i |
|- ( ( log_G ` 1 ) + 0 ) = ( log_G ` 1 ) |
40 |
36 39
|
eqtri |
|- ( ( log_G ` 1 ) + ( log ` 1 ) ) = ( log_G ` 1 ) |
41 |
34 40
|
breqtri |
|- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( log_G ` 1 ) |
42 |
|
1z |
|- 1 e. ZZ |
43 |
|
serclim0 |
|- ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) |
44 |
42 43
|
ax-mp |
|- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 |
45 |
|
climuni |
|- ( ( seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> ( log_G ` 1 ) /\ seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) -> ( log_G ` 1 ) = 0 ) |
46 |
41 44 45
|
mp2an |
|- ( log_G ` 1 ) = 0 |